Qu’est-ce que l’acide hyaluronique?
Acidehyaluronique (HA) is a high-molecular-Poids poidslinear macromolecular acidic mucopolysaccharide composed De larepeating disaccharide units De laD-glucuronic acideEt en plusN-acetyl-D-glucosamine [1]. Hyaluronic acidewas first isolated De lavitreous humour De lacattle dans1934, Et en plusit was discovered that hyaluroniqueacideis also widely found dansLe conseil des ministresinterstitial matrix De laconnective tissue dansanimals Et en plushumans. Among these, the vitreous humour De lathe eye, skin, umbilical cord, cartilage Et en plussynovial fluid De lajoints have high levels De hyaluronicacid. Hyaluronic acidefrom different sources has basically the same structure, but hyaluroniqueacidefrom different sources has different molecular weights[2] [traduction]. As a multifunctional matrix in the body, hyaluroniqueacidehas important physiological functions such as regulating cell proliferation, differentiation, migration, lubricating joints, protecting cartilage, promoting wound healing, resisting oxidation, Et en plusanti-aging.
Hyaluronic acidehas a strong water-retaining effect, Et en plusits moisturising effetis higher than that De laother moisturising substances found in nature. It is known as an ideal natural moisturising factor Et en plushas been widely used in clinical medicine and cosmetics production. With the approval De hyaluronicacid as a new raw material for food this year, the applicationfields De lahyaluroniqueacid are constantly expanding. At the same time, consumers' La sensibilisatiSur leà la santé s’améliore constamMent mentEt etla demande de matières premières à base d’acide hyaluronique ne cesse de croître. La préparatISur leionindustrielle d’acide hyaluronique de haute qualité est essentielle. Cet article donne un aperçu des fonctions physiologiques, de la préparation, de la séparation et de la purification, ainsi que des domaines d’application de l’acide hyaluronique naturel, dans le but de fournir une référence pour le développement et l’utilisation de l’acide hyaluronique.
1 Distribution et fonctions physiologiques de l’acide hyaluronique dans le corps
1.1 Distribution de l’acide hyaluronique dans le corps
Natural hyaluronic acid is widely distributed in diverstissues of higher animals, although the amount varies. It is mainly distributed in the cell matrix and lubricating fluid, including humainumbilical cord, synovial fluid, skin, thoracic lymphatic fluid, vitreous humour, and rooster comb. The rooster comb is currently the animal tissue with the highest hyaluronic acid content. The hyaluronic acid content of various organisms is shown in Table 1 [3] [traduction]. Hyaluronic acid is widely distributed in various tissues of the human body. The distribution of hyaluronic acid in the tissues of different organisms is basically the same, with the main difference being in molecular weight. The molecular weight of hyaluronic acid in normal biological tissues is approximately 1000–8000 kDa. Different molecular weights stimulate different receptors or pathways in three-dimensional structures, exerting different effects [4] [traduction].
1.2 fonctions physiologiques de l’acide hyaluronique
1.2.1 lubrifie les articulations et protège le cartilage
Hyaluronic acid is widely distributed in the intercellular matrix and cell matrix. It is the main component of synovial fluid in the joints and is distributed on the surfaces of cartilage and ligaments. Hyaluronic acid has good viscoelasticity. When walking, the synovial fluid is viscous to reduce joint friction. When performing high-impact actions such as running, the synovial fluid is elastic to buffer the stress on the joints. When the joint is under load, the synovial fluid changes from a fluid to an elastic body to protect the articular cartilage [5]. There is a lot of evidence to suggest that osteoarthritis in elderly patients is caused Par:oxidative stress. Osteoarthritis is the wear and tear of articular cartilage. When attacked Par:reactive oxygen species, the long-chain hyaluronic acid is broken down into hyaluronic acid fragments, weakening the overall structure of the cartilage [6] [traduction].
1.2.2 favorise la guérison des plaies
The wound healing process can be divided into four stages: hemostasis, inflammation, proliferation and maturation. When an injury occurs, the amount of hyaluronic acid in the wound increases. Due to its large molecular weight, hyaluronic acid is used as an early temporary structure [7] [traduction]. During the inflammation stage, damaged cells begin to secrete exudates containing salts, water and proteins [8] [traduction]. This stage is characterised Par:redness and heat at the injury site, pain and dysfunction [9] [traduction]. Hyaluronic acid binds to the CD44 receptor on the surface of leukocytes and endothelial cells, causing fewer leukocytes to migrate to the inflammation site and reducing the degree of wound swelling [10] [traduction]. The CD44 receptor plays an important role in the inflammatory response, in which high molecular weight hyaluronic acid stimulates the anti-inflammatory response and Acide hyaluronique de faible poids moléculaireinduces the inflammatory response. In the proliferation phase, the wound is rebuilt with new collagen tissue, the extracellular matrix is secreted, and the wound begins to shrink under the action of myofibroblasts [11] [traduction]. In the maturation phase, the unorganized collagen forms cross-links, reducing scarring and enhancing the elasticity of the La peauin the wound area.
1.2.3 régulation de la prolifération, de la migration et de la différenciation cellulaire
Hyaluronic acid is an important regulatory factor affecting the processes of cell proliferation, migration and differentiation. The presence of hyaluronic acid helps to hydrate local tissues, weaken the fixation of cells to the extracellular matrix, and promote cell separation, migration and even division. The hyaluronic acid receptors on the cell surface can also be linked to some kinases related to cell movement [12] [en].
During the early stages of mitosis, hyaluronic acid levels increase, and levels drop sharply after mitosis enters the G1 phase (the period between the completion of the previous mitosis and the beginning of the synthesis phase). High levels of hyaluronic acid cause the release of growth factors, and by forming an extra-cellular membrane, it affects cell-cell interactions and accelerates cell proliferation [13] [en]. However, it has not yet been observed that hyaluronic acid directly promotes mitotic activity. This signalling and regulatory effect of hyaluronic acid is related to its molecular weight. Different molecular weights trigger different signalling pathways. Low molecular weight hyaluronic acid induces cell proliferation. In addition, low molecular weight hyaluronic acid can enhance the expression of pro-inflammatory factors, while high molecular weight hyaluronic acid has the opposite effect [14] [traduction].
1.2.4 effet angiogénique
Il a été rapporté quelow molecular weight hyaluronic acid can stimulate the expression of signal molecules, stimulate the proliferation and migration of vasculaireendothelial cells, and high molecular weight hyaluronic acid can inhibit endothelial cell proliferation and migration, thus having an anti-angiogenic effect [15] [traduction]. However, most of the evidence supporting the effect of hyaluronic acid on cell growth has been produced using tumour xenografts. Some data show that injecting low molecular weight hyaluronic acid can inhibit tumour growth [16] [traduction], which conflicts with the above concept and indicates that there may be more complex pathways and interactions that require further research.
1.2.5 activité antioxydante
Studies have found that hyaluronic acid can eliminate free radicals and has a certain degree of antioxidant activity. High molecular weight hyaluronic acid can protect cells from the effects of reactive oxygen species, which, in excess, can damage proteins, lipids and DNA. Some of the antioxidant properties of hyaluronic acid include its ability to reduce ultraviolet-induced apoptosis and acid-induced DNA Adamage [17] [traduction]. Feng Ning et Al., et al.[18] studied the serum superoxide dismutase activity after oral administration of hyaluronic acid and found that hyaluronic acid has an in vivo antioxidant effect. Yu Haihui et al. [19] found that the mucus hyaluronic acid of Andrias davidianus has a certain in vitro antioxidant activity and can scavenge DPPH.,.OH, ABTS+.and reduce Fe3+. Some scholars speculate that the antioxidant properties of hyaluronic acid are due to the hydroxyl functional groups in the structure of hyaluronic acid, which can absorb reactive oxygen species [14].
1.2.6 effet anti-âge
Studies have found that the amount of hyaluronic acid in the human body decreases with age. Compared to the age of 20, the amount of hyaluronic acid decreases by 75% at the age of 60. The older the person, the lower the amount of hyaluronic acid in the body. The amount of hyaluronic acid in the body also varies among people of the same age. People with a high amount of hyaluronic acid in the body look younger, while people with symptoms of aging have significantly lower amounts of hyaluronic acid in the body [20]. A decrease in the amount of hyaluronic acid in the skin reduces the space filled by the intercellular gel-like matrix, causing the cells to be arranged closely together. Collagen loses water and hardens, making the skin rough and losing its elasticity. Studies have found that hyaluronic acid can heal skin damage caused by ultraviolet radiation, and high concentrations of hyaluronic acid can affect collagen expression [21].
In summary, the physiological functions of hyaluronic acid are closely related to its molecular weight. Hyaluronic acids with different molecular weights play different roles in physiological functions such as wound healing, regulation of cell proliferation, migration, differentiation, l’angiogenèseand antioxidant activity. Low molecular weight hyaluronic acid induces inflammatory responses, induces cell proliferation, stimulates the proliferation and migration of vascular endothelial cells, and high molecular weight hyaluronic acid has better antioxidant activity than low molecular weight hyaluronic acid. This difference in physiological function leads to differences in its ultimate application in products.
2 Structure et propriétés de l’acide hyaluronique
2.1 Structure de l’acide hyaluronique
Hyaluronic acid is a high molecular weight acidic mucopolysaccharide composed of alternating glucose units linked by β-1,3-glycosidic bonds and N-acetylglucosamine units linked by β-1,4-glycosidic bonds. The primary structure of hyaluronic acid is shown in Figure 1 [22] [en]. Hyaluronic acid, as the only currently discovered non-sulfur-containing glycosaminoglycan, differs from common glycosaminoglycans in that it is synthesized via cell membrane surface membrane proteins rather than by the cell' L lGolgi appareil [23].
2.2 propriétés physiques et chimiques de l’acide hyaluronique
Hyaluronic acid is a white amorphous solid with the common properties of acidic mucopolysaccharides. It is soluble in water but insoluble in organic solvents such as ethanol [24] [traduction]. Hyaluronic acid aqueous solutions have specific rheological properties, with good viscoelasticity. Low concentrations or small molecular weight hyaluronic acid exist as monomers, with little change in viscosity. High molecular weight and high concentration hyaluronic acid has good viscoelasticity[25] [traduction], and exhibits non-Newtonian fluid characteristics, making it very suitable for simulating synovial fluid. The viscoelasticity of synovial fluid is related to the concentration of hyaluronic acid[13].
A reasonable change in the molecular weight and solution concentration of hyaluronic acid can obtain better viscoelasticity. Due to the presence of hydrogen bonds between the monosaccharides in the hyaluronic acid molecule chain, hyaluronic acid at low concentrations can also form a unique honeycomb network structure, allowing hyaluronic acid to adsorb about 1000 times its own moisture, which has strong moisturising properties[26] [en]. Hyaluronic acid with different molecular weights has different physical and chemical properties. High molecular weight hyaluronic acid has higher viscosity, while the random curled structure of long-chain hyaluronic acid is more stable, and short chains are more likely to expand [27] [traduction]. The method and biological pathway by which cells differentiate between high molecular weight and low molecular weight hyaluronic acid are still unknown.
3 préparation et purificationde l’acide hyaluronique
3.1 Sources d’acide hyaluronique
3.1.1 sources de tissus animaux
Animal tissue sources can be divided into terrestrial sources and marine sources. Currently, hyaluronic acid is mainly extracted from terrestrial animal tissues such as the rooster comb, human umbilical cord, egg shell membrane, and pig skin. The rooster comb is widely used for hyaluronic acid extraction because it is an animal tissue with a high hyaluronic acid content. Due to the limited supply of terrestrial animal tissue, large-scale production is not possible. Researchers are constantly trying to extract hyaluronic acid from other animal tissues or other sources of raw materials. Marine biological resources such as animal residues, waste, and by-products have always received widespread attention due to their long-term economic and environmental benefits.
They have significant potential as a source of substances such as hyaluronic acid [28] [traduction]. Researchers have extracted hyaluronic acid from biological tissues such as the ocular vitreous of marine organisms such as the eyes of cuttlefish, squid, tuna, frog skin, fish mucus, and the aqueous humour of freshwater mussels [19, 25, 29]. Yi et al. [29] [en] first extracted hyaluronic acid from the ocular vitreous of tuna, with a final extraction rate of 0.013%. and Haihui Yu et al. [19] extracted it from the surface mucus of the chinoisgiant salamander. When the amount of added trypsin was 1.5%, the yield of hyaluronic acid was 1.7041 mg/g. The structure of the extracted hyaluronic acid was the same as the standard product. Compared with the tissues of land animals such as the rooster comb and umbilical cord, the extraction rate was low, but it can be used as a stable source of hyaluronic acid extraction.
3.1.2 voie d’origine de la fermentation microbienne
Hyaluronic acid is widely distributed in the cell envelope of some bacteria, protecting the cells from oxygen damage. Previous research on hyaluronic acid in bacteria was mainly aimed at exploring the composition and function of the envelope. Shiseido in Japan was the first to apply the fermentation method to the industrial production of hyaluronic acid. The synthesis of hyaluronic acid in the cell is complex and continuous. Glucose is converted to gluco-6-phosphate by glucokinase, and then to the precursors uridine diphosphate N-acetylglucosamine and uridine diphosphate glucuronic acid by various enzymes such as isomerase and glucuronic acid phosphatase and other enzymes to produce the precursor substances uridine diphosphate-N-acetyl-glucosamine and uridine diphosphate-glucuronic acid, which are alternately added to the hyaluronic acid molecule chain under the action of hyaluronic acid synthase [30] [en].
Streptococcus zooepidemicus from group C is the main source of hyaluronic acid [31]. Due to its pathogenicity and endotoxins in wild-type strains, it has become common practice in actual production to modify wild-type strains and produce hyaluronic acid through non-pathogenic strains [32] [traduction]. The main means of strain treatment are genetic engineering, mutagenesis breeding and protoplast breeding. JIN et al. [33] [traduction] improved the hyaluronic acid synthesis pathway of Bacillus subtilis by integrating the leech-derived hyaluronidase LHyal gene, regulating the expression of LHyal by sequence optimization and N-terminal fusion His tag strategy, and obtaining a high-yield strain that accumulates hyaluronic acid to 19.38 g/L after 100 h of fermentation in a 3 L fermenter. Wei Chaobao et al. [34] selected Streptococcus zooepidemicus, which has a short production cycle and high strength, for construction on this basis, and obtained a high-yield strain that can alleviate the problem of dissolved oxygen during fermentation. At present, the synthesis of hyaluronic acid has been achieved through the heterologous expression of hyaluronic acid synthase in different hosts such as Bacillus subtilis [35] [traduction], Lactobacillus [36] [traduction] and Bacillus glutamicum [37] [traduction].
3.2 préparation de l’acide hyaluronique
3.2.1 préparation d’acide hyaluronique à partir de tissus animaux
The production of hyaluronic acid from animal tissue sources often involves tissue extraction. The complete process includes pretreatment, extraction, separation and purification, drying, etc. The processing technology is relatively mature, the extraction method is simple, and most of the extracted hyaluronic acid is of high molecular weight [38] [traduction], with high viscosity and good moisturising properties. It is mainly used in the pharmaceutical and cosmetics industries. The main extraction methods are salt extraction and enzyme extraction. The addition of inorganic salts and enzymes can break the complexation of hyaluronic acid and proteins in animal tissue. In addition, enzymes can hydrolyse impurities such as proteins and nucleic acids, which is beneficial for the extraction of hyaluronic acid [39] [traduction].
KALKANDELEN et al. [40] [traduction] successfully extracted hyaluronic acid from the comb of a chicken by defatting the tissue homogenate with acetone and extracting it multiple times with a Le sodiumacetate solution. However, the tissue extraction method is complicated and the extraction rate is low. Enzyme extraction has become a research hotspot due to its high efficiency. Currently, the commonly used enzymes for extraction include neutral proteases, pepsin, trypsin, papain, etc. Ürgeová et al. [41] compared the results of extracting hyaluronic acid from eggshell membranes using pepsin, trypsin and papain. The results showed that trypsin was more effective than the other two enzymes. At a Le pHof 8, 37 °C and a trypsin dosage of 50 U/g for enzymolysis of eggshell membranes, the hyaluronic acid extraction rate was 44.82 mg/g eggshell membrane. In order to obtain a better extraction effect, enzyme mixtures or ultrasound are often used in experiments to assist extraction. Chen Shengjun et al. [42] used ultrasound (200 W, 30 kHz) to assist trypsin and complex protease to extract from tilapia eyes. After optimisation, the hyaluronic acid yield was 11.44%, which is about 5% higher than that obtained by simple enzymatiquehydrolysis.
3.2.2 préparation d’acide hyaluronique microbien
The microbienfermentation process mainly includes the following steps: seed culture, fermentation, separation and purification, and drying. At present, research on improving the extraction efficiency of microbial fermentation mainly focuses on cultivating excellent strains, selecting suitable culture media, and optimizing fermentation conditions. There have been many studies on obtaining high yields of hyaluronic acid by controlling the conditions of the culture medium and fermentation process. Compared to the preparation of hyaluronic acid by tissue extraction, one advantage of the microbial fermentation method is that the molecular weight of hyaluronic acid can be controlled during the fermentation process. This is also the main content of current research on the fermentation process of hyaluronic acid. The regulation of hyaluronic acid molecular weight is affected by hyaluronic acid synthase and the relative strength of its binding to the substrate, the concentration ratio of hyaluronic acid precursor substances to hyaluronic acid synthase concentration [43]. Fructose-6-phosphate produced from carbon sources can be used to synthesise lactic acid, inhibit bacterial growth and hyaluronic acid synthesis. It is possible to inhibit other pathways that compete with hyaluronic acid for carbon sources (such as glycolytic pathways), so that more carbon sources can be used for hyaluronic acid synthesis, thereby increasing hyaluronic acid production and molecular weight [44].
The balance of metabolic fluxes can affect the molecular weight of hyaluronic acid [45] [traduction]. La recherchehas been carried out on fermentation conditions that affect hyaluronic acid production and molecular weight, such as temperature, aeration, pH, stirring speed, etc. Certain research has been conducted on fermentation conditions that affect the yield and molecular weight of hyaluronic acid, such as Liu Jinlong et al. [46] [traduction] who studied the effect of fermentation conditions on the molecular weight of hyaluronic acid synthesized by Streptococcus equi subsp. zooecium. Batch culture fermentation mode is more conducive to the production of high molecular weight hyaluronic acid than glucose feeding culture mode. Within the range of 0–45% dissolved oxygen concentration, the relative molecular weight increased by 109.4% with increasing dissolved oxygen levels. Low temperatures are conducive to hyaluronic acid synthesis, and the yield and molecular weight of hyaluronic acid are relatively high at low temperatures. At 33 °C, the yield and molecular weight of hyaluronic acid are 4.41 g/L and 2.54×106, respectively. pH has a different effect on the yield and molecular weight of hyaluronic acid. The highest yield of hyaluronic acid (3.72 g/L) was obtained at pH 7, and the lowest yield (3.01 g/L) was obtained at pH 8. However, the highest molecular weight (2.38×106) was obtained at pH 8, indicating that Acide hyaluronique de haute qualité production can be achieved by controlling the fermentation process conditions during the production process.
L’extraction de tissus animaux et la fermentation microbienne sont les deux méthodes les plus courantes pour produire de l’acide hyaluronique. L’extraction tissulaire est utilisée pour extraire l’acide hyaluronique des tissus animaux. Cette méthode était souvent utilisée au début, mais le processus d’extraction est compliqué, le rendement en acide hyaluronique est faible et la source des matières premières est limitée. Avec les progrès de la science et de la technologie, la fermentation est devenue la principale méthode de production industrielle d’acide hyaluronique en raison de ses avantages de faible coût, de rendement élevé et de la facilité de production à grande échelle. Avec l’amélioration continue de la méthode de préparation, people's demand for hyaluronic acid production has gradually shifted from high yield to high quality. Current research focuses on producing hyaluronic acid with specific molecular weight through genetic engineering, mutagenesis and other methods to meet the needs of hyaluronic acid in different applications. Establishing an efficient and safe preparation method of hyaluronic acid to produce hyaluronic acid with specific molecular weight that meets various application scenarios will become a research hotspot.
3.3 séparation et purification de l’acide hyaluronique
Regardless of whether the tissue extraction method or the fermentation method is used, the crude hyaluronic acid extracted contains some proteins, nucleic acids and other impurities, which need to be separated and purified to obtain pure hyaluronic acid. According to the principle of separation and purification, it can be roughly divided into three methods: precipitation, La filtrationand adsorption.
3.3.1 précipitation
The main precipitation methods are quaternary ammonium salt precipitation and organic solvent precipitation. The principle of the quaternary ammonium salt purification method is that the quaternary ammonium salt and hyaluronic acid have different charges in an aqueous solution. The two form a complex and precipitate out in a low salt solution, but dissociate and dissolve in a high salt solution, thereby achieving the purpose of removing impurities that do not complex with hyaluronic acid. Commonly used quaternary ammonium salts include cetylpyridinium bromide (CPB), cetyltrimethylammonium bromide (CTAB), cetylpyridinium chloride (CPC) and other long-chain quaternary ammonium salts [47] [traduction]. This method of purification yields high-purity hyaluronic acid with good results, and can remove impurities that do not complex with quaternary ammonium salts. The organic solvent precipitation method mainly affects the dielectric constant of the medium to cause intra- and intermolecular aggregation, thereby achieving the purpose of removing proteins [48] [traduction].
Compared with restricted reagents such as chloroform and acetone, ethanol is more widely used due to its safety and low cost. Song Lei et al. [49] optimised the factors affecting the purity of hyaluronic acid after ethanol extraction by combining plate and frame filtration to obtain a high purity hyaluronic acidAvec une teneur de 93,71 %. CAVALCANTI et al. [50] [traduction] ont étudié l’effet du rapport éthanol/bouillon de fermentation sur la constante diélectrique et l’effet du pH sur la purification de l’acide hyaluronique. A un pH de 4 et un rapport liquide de fermentation de l’éthanol de 2:1, la pureté de l’acide hyaluronique était de 55%, le taux de récupération était de 85%, et la précipitation du solvant organique a été utilisée pour la purification initiale de l’acide hyaluronique avec de bons résultats.
3.3.2 Filtration
The principle of filtration is to retain particles on a porous membrane based on particle size. Compared to organic solvent precipitation, filtration does not involve the consumption of organic solvents, is simple to implement, and can be industrialised. However, the protein removal effect of filtration alone is not good, and pore blockage will occur as purification progresses, limiting its application in the purification of hyaluronic acid. Tangential filtration or the use of filter aids can greatly reduce pore blockage [51] [traduction]. GÖZKE et al.[52] [traduction] proposed an electrofiltration technique combining membrane filtration and electrophoresis. The electric field has a strong promoting effect on the filtration of hyaluronic acid. Compared with conventional filtration, the concentration factor based on the sample osmotic mass is increased by nearly 4 times in the same experimental time. Moreover, this filtration method will not negatively affect the molecular structure and average molecular weight of hyaluronic acid, providing new possibilities for the downstream purification process of hyaluronic acid.
3.3.3 Adsorption
L’adsorption est une méthode de purification de l’acide hyaluronique basée sur la rétention sélective de composés à la surface d’un solide poreux. Les adsorbants couramment utilisés comprennent le charbon actif, les résines et le gel de silice. Le charbon actif est un matériau idéal pour séparer et purifier l’acide hyaluronique car il a une forte adsorption des protéines et des acides nucléiques et une faible adsorption des polysaccharides neutres à poids moléculaire élevé. Wei Linna et al. [53] ont utilisé la précipitation d’éthanol combinée à l’adsorption de charbon actif dans le processus d’extraction de l’acide hyaluronique du plateau zokor tissues. The recovery rate of the extracted hyaluronic acid can reach 72.73%. CAVALCANTI et al. [50] found that the structure of hyaluronic acid at different pH values has an important effect on the precipitation performance. At pH 4, the recovery rate of hyaluronic acid was 85%, and at pH 7, the recovery rate of hyaluronic acid was 70%. During the use of activated carbon, adjusting the pH to an appropriate value can increase the recovery rate of hyaluronic acid.
Electrophoresis is a widely used method for separating proteins, and its separation efficiency is affected by the gel. Compared with other operations, it has a lower purification efficiency for hyaluronic acid. Ion échangechromatography is also one of the widely used methods for purifying biological macromolecules. This method is gentle and does not cause changes in molecular structure, but it is relatively expensive. It is necessary to select suitable exchange resins and exchange conditions, and the operation is complex. It is mainly used in the production of medical grade hyaluronic acid. Ni Hangsheng et al. [54] used a strong acid cation exchange resin in tandem with a strong base anion exchange resin modified with a histidine group. The impurity proteins in the crude hyaluronic acid were purified by exchange adsorption with the strongly acidic cation exchanger in an acidic solution, and eluted with Le sodiumchloride solution. The protein content of the obtained high-quality hyaluronic acid is less than 0.075%, the average molecular weight is greater than 9.41×105, and the yield of purified weight is 58%~61%.
Separation and purification is an essential step in the preparation of high-purity, high-quality hyaluronic acid. At present, there is relatively little research on the effect of various purification operations on the purity of hyaluronic acid during purification. CAVALCANTI et al. [51] expressed the degree of purification as a percentage of hyaluronic acid or protein in the solution, and summarized the change in the purity of hyaluronic acid during the purification process.
The hyaluronic acid fermentation broth derived from Streptococcus zooepidemicus first underwent an isopropanol precipitation operation, with a protein content of 14.1%; a silica gel adsorption operation, with a protein content of 4.5%; and a charcoal filter module combining filtration and adsorption, with a protein content of only 0.6%. Finally, the protein content reached 0.06% after dialysis filtration. Each separation and purification method has its own advantages and disadvantages. In actual industrial production, a reasonable combination of several separation and purification methods is often used to achieve the maximum effect, depending on the source of the raw materials and the different requirements of the end products.
4 Applicationd’acide hyaluronique
4.1 Application dans le secteur alimentaire
Hyaluronic acid is widely used in the Japanese food market. In addition to La santéfoods, it is also widely used in ordinary foods such as beverages, soft candies, and jams. In the US food market, hyaluronic acid is mainly used as a dietary supplement [55]. At present, the main products containing hyaluronic acid in China are health foods, and the main effect is to improve skin moisture. Cha Shenghua et al. [56] [traduction] developed a kind of bird' S nest peut avec l’hyaluronatede sodium comme matière première principale, qui peut effectivement améliorer l’humidité de la peau sans autres réactions indésirables. Les principaux types sur le marché sont les capsules, l’administration orale et les boissons en poudre. Après l’acide hyaluronique est absorbé par la digestion orale, le précurseur de la synthèse de l’acide hyaluronique dans le corps augmente, ce qui augmente la teneur en acide hyaluronique dans le corps et le concentre dans le tissu de la peau, améliorant ainsi la peau et#39; S capacité de rétention d’eau, adoucissant le stratum corneum, améliorant encore l’élasticité de la peau et réduisant les rides [57].
4.2 Application dans les cosmétiques et les nécessités quotidiennes
Hyaluronic acid is found in large quantities in the human body and other living tissues. It has extremely strong moisturising properties and is mainly used in cosmetics as a moisturising agent, thickener and emulsifier [58−59]. At present, almost all types of cosmetic formulations on the market contain hyaluronic acid. Hyaluronic acid can easily form a hydrated film on the skin to enhance the lubrication of the skin, promote the absorption of active substances by the skin, and to a certain extent, the Formation des formateursof the film can isolate bacteria, which is beneficial to anti-inflammatory and repair of the skin and delay skin aging [60]. Hyaluronic acid is a component that exists in skin tissue itself, which is safer. In addition, as hyaluronic acid has an anti-inflammatory and restorative effect in the mouth, it can be added to toothpaste to provide a certain degree of moisturising and efficacy[61]. The application of hyaluronic acid in daily necessities is constantly expanding and deepening.
4.3 applications médicales
Hyaluronic acid is an important component of synovial fluid in the joints and plays an important physiological role in joint protection. Abnormal synthesis or metabolism of hyaluronic acid in the joints can lead to joint diseases. At this time, exogenous hyaluronic acid can be injected to supplement the synovial fluid and improve the physiological function of the joints[62] [traduction]. Due to its unique physical and chemical properties and biocompatibility, hyaluronic acid is widely used in ophthalmic surgeries related to the retina and cataracts.
L’acide hyaluronique est utilisé comme produit d’appoint en esthétique médicale pour injecter sous la peau pour éliminer les rides et les cicatrices du visage et donner au visage un aspect dodu [63]. Le spray d’acide hyaluronique peut être employé pour réparer le patient et#39;s face after laser surgery, effectively restoring skin barrier damage[64]. Hyaluronic acid derivatives are also widely used in ophthalmic preparations. For example, sodium hyaluronate can replace the role of tear mucin and is used to traiterdry eye disease and relieve dry eye symptoms [65]. Studies have found that the bodyLa teneur en acide hyaluronique augmente lors de l’apparition de nombreuses maladies. Par conséquent, cliniquement, le niveau d’acide hyaluronique dans le sérum peut être utilisé pour refléter les changements dans diverses maladies, ce qui est d’une grande importance pour le diagnostic auxiliaire.
Hyaluronic acid is widely used in food, cosmetics, daily necessities and medicine. Its application in functional skin care products, ophthalmology and orthopedics is relatively mature. There is still huge potential for its application in the food industry. Oral hyaluronic acid is milder than external application and injection, and can stimulate vitality from the inside out. In January 2021, the National Health Commission approved the addition of hyaluronic acid as a new raw material for food to be added to ordinary foods. This indicates that the application of hyaluronic acid in the food sector will see large-scale growth. In addition, there are many modification sites on the hyaluronic acid molecule, and modification of its active groups, such as cross-linking, esterification, and grafting, gives it better physicochemical properties and resistance to enzymatic hydrolysis [66], allowing hyaluronic acid to be used in more complex environments. With technological progress, the application of hyaluronic acid in various fields will become more and more in-depth.
5 Conclusions et perspectives
Hyaluronic acid has important physical and chemical properties and physiological functions. It has a wide range of applications and a large market demand. Global sales of hyaluronic acid raw materials are showing an upward trend. At present, the main methods for industrial production of hyaluronic acid are animal tissue extraction and microbial fermentation. The microbial fermentation method has the advantages of low cost and easy mass production. With the continuous expansion of hyaluronic acid application scenarios and the growing market demand, establishing an efficient and safe hyaluronic acid extraction and purification process, modifying hyaluronic acid molecules to produce specific molecular weight hyaluronic acid that meets different application scenarios will become research hotspots.
Référence:
[1]ZHANG K, JIAN J, ZHANG Z P. progrès de la recherche sur la structure, les propriétés, les modifications fication and application of hyaluronic Acide [J]. polymère Bulletin, 2015,9:217−226.
[2] JEON O, SONG S J, LEE K, et al. Propriétés mécaniques et Comportement de dégradation des hydrogels d’acide hyaluronique récroisés à various La mise en relation Densités [J]. glucides Polymères,2007, 70(3):251−257.
[3] KOGAN, G., lcpe, L., STERN, R., et al. Acide hyaluronique: biopolymère naturel ayant une large gamme d’applications biomédicales et industrielles [J]. Biotechnology Letters,2006,29(1):17−25.
[4] COWMAN N ° de catalogueK, LEE HG, SCHWERTFEGERK L,et al. Le contenu et la taille de l’hyaluronan dans biologique Fluides et tissus [J]. Frontiers in Immunology,2015(6):261.
[5] hlav
[6] MAREK P, ma
[7] VOIGT J, VICKIE R. Hyaluronic Dérivés acides et leur guérison effect on Brûlures, épithélial chirurgicale Plaies, and Plaies chroniques: revue systématique et méta-analyse d’essais contrôlés randomisés [J]. Wound Repair and Regeneration,2012,20(3):317− 331.
[8] HOTAMISLIGILG S. Inflammation, métaflammation et troubles miométaboliques [J]. Nature,2017,542(7640):177−185.
[9] KOJOUHAROV H V, TREJO I, CHEN B M. Modélisation des effets de l’inflammation dans la guérison des fractures osseuses [C]// American Institution - tute De la physique Conférence de presse Série. américain Institut de recherche De la série de conférences de physique, 2017.
[10] GRISHMA S P, ROHAN B, CHARLES D E. numérique In - enquête Du laminage des leucocytes, adhérence Et bond formation Sur surface revêtue d’une densité de p-selectin variable [J]. Cell Press, 2019, 116(3): 18.
[11] Lan⊋ N X, L lD Q, st
[12] JOHN CH W Y,ABATANGELO G. fonctions de hyaluron- Une réparation des plaies [J]. Wound Repair and Regeneration,1999,7(2): 79−89.
[13] HUI E, GIMENO K I, GUAN G, et al. spatiotemporel Contrôle de la viscoélasticité dans des hydrogels d’acide hyaluronique photoréglables [J]. Biomacromolecules,2019,20(11):4126−4134.
[14] DOVEDYTIS M, LIU Z J, BARTLETT S. Hyaluronic acid and its biomedical applications: A review[J]. Régénération mécanique,2020,1:102−113.
[15] SLEVIN M, KRUPINSKI J, GAFFNEY J, et al Hyaluronan- avec médiation angiogenesis in vascular Maladie: découvrir Voies de signalisation des récepteurs RHAMM et CD44 [J]. Matrix Biology: Revue de presseof the International Society for Matrix Biology, 2007, 26(1): 58-68.
[16] ZHONG Y N, KATHARINA G, CHENG L,et al. Hyaluron- à coque acide Activable à l’acide Paclitaxel promédicament Les micelles Effet - ivement Cible: and treat cd44-surexpression human sein Xénogreffes tumorales in vivo[J]. Biomaterials,2016:84.250−261.
[17] MOSELEY, R., LEAVER, M., WALKER, et al. Comparaison des propriétés antioxydantes de HYAFF ® -11p75, AQUACEL ® et hyaluronan vis-à-vis des espèces réactives d’oxygène in vitro[J]. Bioma- terials,2002,23(10):2255−2264.
[18]FENG N, SHI Y L, GUO F X, et al. Etude sur l’effet D’acide hyaluronique oral sur l’amélioration de l’humidité de la peau et in vivo Effet antioxydant [J]. Food and Drugs,2016,18(6):386−390.
[19]YU H H, LI W, TONG C Q. Extraction de l’acide hyaluronique du mucus de surface corporelle de la salamandre géante et de son activité antioxydante [J]. Transformation des produits agricoles,2018,10:18−21.
[20]GUO X P, HE Y L, Le soleil M L, et al. Application of hyaluronic acid in health Produits [J]. Chinese Journal of Biochemical Pharmaceutics,2002, 23(1):49−51.
[21]WU B J, NI H L, ZHU M L, et al. Progrès de la recherche et application de l’hyaluronic Acide [J]. Journal chinois de chirurgie plastique esthétique,2018,29(4): 252−254.
[22] LAURENT t. C. biochimie de hyaluronan[J]. Acta Oto- laryngologica Supplementum,1987,442:7−24.
[23] en savoir plus J J J S, WANG J Q, YI Y, et al. Progrès de la recherche sur l’acide hyaluronique et ses dérivés Dérivés [J]. Chinese Journal of Bioengineering,2015,35(2): 111−118.
[24] WANG C F. le statut de la demande Acide aluronique [J]. Journal chinois des dispositifs médicaux,2018,42(1): 74−76,78.
[25] SHA K. recherche sur la technique d’extraction of hyaluronic acid from the skin De chinois forêt Grenouille [D]. Changchun: université d’agriculture de Jilin, 2004.
[26] JIANG S, LIANG H. acide hyaluronique — un outil de beauté très recherché [J]. Monde en santé,2020(2):25−27.
[27] MARY K. C, SHIRO M. Approches expérimentales de la structure hyalur- onan [J]. Glucides Research,2005,340(5):791−809.
[28] TRIVEDI N, BAGHEL R S, BOTHWELL J, et al. Procédé intégré d’extraction de combustibles et de produits chimiques à partir de la biomasse de macroalgues marines [J]. Rapports scientifiques,2016,6(1):30728.
[29] YI Y, XU J, MEI J F, et al. Etude sur le procédé d’extraction de l’acide hyaluronique D’après les yeux de thon [J]. Journal de l’université de technologie de Zhejiang, 2018,46(3):276−281.
[30] ARINOBU Y, ATAMAS S P, OTSUKA T, et al. Clonage moléculaire et Caractérisation d’un hyaluronan putatif de souris Syn - thase[J]. Biological Chemistry,1996,271(38):23400−23406.
[31]DONATELLA C, ILEANA D I, ELISABETTA C, et al. Ingénierie S. equi subsp. Zooepidemicus vers la concurrenttion de hyaluronic acid and chondroïtine biopolymères of Intérêt biomédical [J]. AMB Express,2017,7(1):61.
[32] PAN N C, PEREIRA H C B, SILVA M L C, et al. Amélioration de la production d’acide hyaluronique par Streptococcus zooepidemicus dans la mélasse de canne à sucre [J]. Biotechnologie et chimie appliquée,2017,182(1):276−293.
[33] JIN P, KANG Z, YUAN P H, et al. Production d’hyaluronan à poids moléculaire spécifique par Bacillus subtilis 168[J]. Metabolic Engineering 2016, 35: 21-30.
[34]WEI C B, DU G C, CHEN J et al. Construction d’un bâtiment d’ingénierie Souche de Streptococcus oligosaccharide d’acide hyaluronique en fermentation Zooepidemicus [J]. Journal chinois de génie biologique,2019, 35(5):805−815.
[35] ADAM W, WESTBROO K, XIANG R, et al. Ingénierie métabolique pour améliorer la production hétérologue d’acide hyaluronique chez Bacillus subtilis[J]. Métabolique,2018,47:401−413.
[36] Sunguro[unused_word0006], lu C, SEZGIN D E, AYTAR, P, et al. Production d’acide hyaluronique à titre plus élevé chez Lactococcus lactis recombinant [J]. Biochimie préparatoire & Biotechnologies,2018,48(8): 734 à 742.
[37] CHENG F, YU H, STEPHANOPOULO G, et al. Ingénieur de Corynebacterium glutamicum pour la biosynthèse à haut titre de l’acide hya- luronique [J]. Métabolique,2019,55:276−289.
[38] YAMADA T, KAWASAKI T. synthèse microbienne de hyalur- onan et chitine: nouvelles approches [J]. Biosci Bioeng, 2005, 99(6): 521-528.
[39] SADHASIVAM G, MUTHUVEL A. isolement et caractérisation de l’acide hyaluronique dans les organismes marins [J]. Advances in Food and Nutrition Research,2014, 72:61-77.
[40] KALKANDELEN C, SU S, SAATCIOGLU E, et al. Hyalur- production d’acide onique et analyse à partir de coq comb[C]// 2020 Med- ical Technologies Congress (TIPTEKNO). Antalya, 2020: 1−4.
[41]
[42]CHEN S J, CHEN H, GAO R C et al. Conditions technologiques pour l’extraction de l’acide hyaluronique des yeux de tilapia par ultrasons assistés enzymatic Hydrolyse [J]. Journal of nucléaire L’agriculture, 2014,28(8):1446−1452.
[43]GAO J J, YANG S L. progrès de la recherche sur la production de Mo - leculaire weight hyaluronic acid by microbial Fermentation [J]. Chinese Journal of Bioengineering,2017,37(5):118−125.
[44]DONG Z H. Research on mutation breeding and molecular weight controlable technology of hyaluronic acid production by fermentation[D]. Hangzhou: Zheji- université de technologie ang, 2017.
[45] KARAMI M, SHAHRAKY M K, RANJBAR M, et al. Préparation, purification et caractérisation d’acide hyaluronique de faible poids moléculaire [J]. Biotechnology Letters,2021,43(1):133−142.
[46] LIU J L, ZHAO G Q, Li Z M, et al. Effet de la condition de culture sur le poids moléculaire de l’acide hyaluronique synthétisé par Streptococcus equisimilis[J]. Journal of Food Science and Biotechnology,2015,34(2):209−214.
[47] AMAGAI I, TASHIRO Y, OGAWA H. amélioration du procédé d’extraction de l’hyaluronan à partir du globe oculaire de poisson et caractérisation mole- culaire [J]. Sciences halieutiques,2009,75(3):805−810.
[48] LI Y, SHI S, YANG X, et al. La déprotéinisation, les activités antioxydantes et l’effet inhibiteur sur l’amylase de polysaccharides de la soie de maïs [J]. Biochem Biotechnol, 2019, 15(2): 83-90.
[49]SONG L, MENG G Q, GUO Y F, et al. Etude du procédé d’extraction et de purification de l’acide hyaluronique dans le bouillon de fermentation [J]. Shandong, ChineAgricultural Sciences,2017,49(3):134−139.
[50] CAVALCANTI A D D, MELO B A G, OLIVEIRA R C, et al. Récupération et pureté de l’acide bio-hyaluronique à masse molaire élevée par précipitation Les stratégies Modulé: by pH and sodium Chlorure [J]. Biochem Biotechnol, 2019, 188: 527-539.
[51] CAVALCANTI A, MELO B, FERREIRA B, et al. Réalisation des principales opérations en aval sur la purification de l’acide hyaluronique [J]. Biochimie des procédés,2020,99:160−170.
[52] G𝟏 zke G, kirschhliet F, PRECHTL C, et al. électro-filtration améliore Sans issue filtration of hyaluronic acid Et présente une autre étape de traitement en aval qui permet de surmonter les défis technologiques des méthodes conventionnelles [J]. Engineering in Life Science,2017,17(9):970−975.
[53]WEI L N, WANG Y, WEI D B, et al. Technologie d’extraction et caractérisation moléculaire de l’acide hyaluronique du plateau zokor Biotechnology Bulletin,2017,33(3):151−161.
[54]NI H S, LI R, HE Y L, et al. La Purification of hyaluronic acid by ion exchange Chromatographie [J]. Chinese Journal of Pharmaceuticals,2001,11:5−8.
[55]LIU S, WANG J Z. les caractéristiques de l’acide hyaluronique et son application dans les aliments [J]. Produits chimiquesEngineering Design Communications,2018,44(8):62.
[56] CHA S H, WANG J L, LIAN C C, et al. Le développement De l’acide hyaluronique collagène sucre de roche bird' S nid et son effet sur l’amélioration de l’humidité de la peau [J]. Food Industry,2020,41(2):129−134.
[57]JIANG Q Y, LING P X, CHENG Y N, et al. Distribution de l’acide hyaluronique oral Chez les animaux [J]. Revue chinoise de produits pharmaceutiques biochimiques,2008, 29(2):73−76.
[58]ZHU C, ZHU Y, WEI W, et al. Préparation et application d’émulsifiant granulaire d’acide hyaluronique modifié par la coumarine [J]. Journal de la Func- tional Polymers,2016,29(4):388−396.
[59] ce S Y, LI J. : J. : J. : Research on the Progrès réalisés of visage Masque [J]. Chemical Management,2017,26:117−119.
[60]MENG L, DU T, WANG X X, et al. Progrès de la recherche dans l’application de l’hyaluronique acid in Cosmétiques [J]. Shandong Chemical Industrie,2018, 47(18):52−54,56.
[61]XU H Y, WANG H Y, XIAO X H, et al. Application d’acide hyaluronique dans le dentifrice [J]. Industrie des produits de soins buccodentaires,2020,30(6): 13-17.
[62] YANG W, CHEN Z H, YI Z Y, et al. L’effet de Injection intra-articulaire d’acide hyaluronique et de placebo dans le Traiter - ment De début and Stade intermédiaire genou L’arthrose: A méta-analyse Basé sur des essais randomisés, à double insu, contrôlés et cliniques [J]. Chinese Tissue Engineering Research,2021,25(23):3760−3766.
[63]LIU L T, WU L, ZENG D L et al. Le progrès de l’application de l’acide hyaluronique pour l’injection [J]. Journal de dermatologie pratique,2020,13(6):352−355.
[64]MA Y, PENG P, ZHAO Q. effet d’application Et l’innocuité de l’acide hyaluronique pulvérisé dans la réparation de la peau des patients après une chirurgie au laser du visage [J]. Recherche et pratique médicales cliniques,2020, 5(36):175−177.
[65]YU H L. clinique observation of 0,3 % % sodium hyaluronate combinées Avec le pranoprofène dans le traitement de la sécheresse oculaire [J]. Electronic Journal of Clinical Medicine,2019,6(60):71.
[66]HU L J, LIU F L, LI L C et al. Synthèse de Dérivés d’acide hyaluronique amphiphile et leur application dans l’administration de nano-médicaments antitumoraux Systèmes [J]. Progrès dans le domaine pharmaceutique Sciences,2017,41(11):804−811.