Qu’est-ce que les Polysaccharides d’astragale?

Déc.24,2024
Catégorie de produits:Matériaux alimentaires sains

l’astragalePolysacharin (APS) is a kind of macromolecular active substance extracted À partir dethe dried roots of Astragalus mongolia or Astragalus podophyllus, which is the most important natural active ingredient of Astragalus............. As an immunity enhancer, Astragalus polysaccharides can activate the immune system of animals, and play an important role in the anti-aging, anti-fatigue, anti-virus, glycemic control, and regulation of the micro-ecosystem, etc. It has been used in the development of the animal health system, and has been shown to be important in the development of the animal health system.

 

En tant que stimulateur immunitaire, le polysaccharide d’astragale peut activer le système immunitaire des animaux Et etjouer un rôle important dans l’anti-âge, l’anti-fatigue, l’anti-virus, le contrôle de la glycémie et la régulation du microécosystème. Les polysaccharides Astragali sont devenus un sujet de recherche chaud tant au pays qu’à l’étranger en raison de leurs diverses activités biologiques et de leur faible toxicité et effets secondaires. Cependant, la pureté des polysaccharides Astragali a un impact plus important sur son activité. Afin de mieux développer et utiliser ce type d’ingrédients actifs, cet article passe en revue les effets pharmacologiques des polysaccharides Astragali et le processus d’isolement et de purification au cours des dernières années, qui est d’une grande importance pour le meilleur développement et l’utilisation deAstragali polysaccharides.

 

Astragalus Membranaceus extract powder


1 le processus de séparation et de purification du polysaccharide d’astragale

1.1 méthode d’adsorption par résine macroporeuse

Macroporous resin adsorption separation technology is a kind of extraction and separation process that uses special adsorbent to selectively adsorb the active ingredients from Chinese medicine compound decoction and remove the ineffective ingredients. This method has the advantages of simple equipment, convenient operation, energy saving, low cost, high product purity, no moisture absorption, etc. Therefore, the application of macroporous resin adsorption method in the separation and purification of traditional Chinese medicine has become more and more widespread in research and production.

 

Zhao Fengchun et Al., et al.[ 1 ] used the adsorption capacity and adsorption rate of Astragali polysaccharide as the indexes to study the adsorption performance and elution parameters of Astragali polysaccharide purified by macroporous adsorbent resin, and the results showed that the saturated adsorption capacity of the resin was up to 30.83mg-g- 1, and the resolution rate was up to 81%. 56.32%, indicating that the separation and purification of Astragali polysaccharides by this method is more effective. Hu et al. [2] used three kinds of column chromatography methods, including cation exchange resin, polyamide and macroporous adsorbent resin, to separate and purify Astragalus polysaccharides and compare their purification effects. The results showed that the cation exchange resin had no obvious effect on the purification of Astragalus polysaccharide, while the purification effect of macroporous adsorbent resin and polyamide was significant, and the purification process of macroporous adsorbent resin was optimized to obtain 96.8% purity of Astragalus polysaccharide. Wang Shuping et al. [3] used AB-8 macroporous adsorbent resin and polyamide as adsorbents to investigate the purification effect of Astragalus polysaccharides with different concentrations of ethanol as eluent, and determined the optimal elution concentration of 30% ethanol as eluent.

 

1.2 chromatographie sur colonne sur Gel

The solid-phase carrier or medium of gel column chromatography is some porous and mesh-structured material with molecular sieve effect, when the mixture containing molecules of different sizes flows through this medium, the components in the mixture are separated according to the molecular weight size. The commonly used gels are dextran gel and agarose gel, but this method is not suitable for the separation of mucopolysaccharides. Qu Jing et al. [4] purified the water-soluble polysaccharide LMw-APS by Sepharose CL-6B gel column chromatography after deproteinization by the Sevage method, and its components were homogeneous and its molecular weight was 5600 Da.

 

The sugar content of LMw-APS was 96.3% as determined by phenol-sulfuric acid method. Li Hongquan et al. [5] applied microwave-assisted extraction technology to obtain Astragalus polysaccharide (APS) from Astragalus membranaceus in Inner Mongolia, and purified by DEAE-cellulose 52 columns, permeation bags and SephadexG-100 columns after neutral protease removal to obtain Astragalus polysaccharides with a molecular weight of 1.1×104 Da and a purity of 97.16%. Zhang Xiaowei et al. [ 6 ] applied the Sevage method to remove the protein of Astragalus polysaccharide after hydrolysis and alcoholic precipitation, and then used DEAE-Sepharose Fast Flow ion exchange column chromatography to collect the components with two symmetrical peaks, and then carried out Sephadex G-200 gel column chromatography. The results showed that the fractions were homogeneous and of high purity. Ding Hailong et al. [7] extracted crude polysaccharides from Astragalus membranaceus by normal-temperature diafiltration, and then purified the crude polysaccharides by 685 anion-exchange chromatography, and separated them by stepwise alcoholic precipitation coupled with Bio-GelP2 gel filtration column chromatography, and the results showed that the seven polysaccharide fractions prepared were homogeneous.

 

1.3 DEAE méthode de colonne de fibre

DEAE cellulose column chromatography takes advantage of the different electrically charged properties of substances, and under certain PH conditions, if a certain substance binds to DEAE cellulose and other substances do not bind to DEAE cellulose, they will be eluted off directly. Compared with other separation methods, DEAE cellulose column chromatography is simple, easy to operate, easy to master, takes a short time, and the results are stable. Tang Yuwei et al. [8] extracted Astragalus polysaccharides by hydroalcohol precipitation, and purified two Astragalus monosaccharides, APS- Ⅰ and APS- Ⅱ, by using DEAE-52 and Sephadex G-100 chromatographic columns, and investigated the physicochemical and morphologic properties and their structures. The results showed that APS-Ⅰ was a heteropolysaccharide with a ribbon structure and a molecular weight of about 1.06 × 104 Da, and APS-Ⅱ was a heteropolysaccharide with a molecular weight of about 2.47 × 106 Da. Guo Hui-Qing et al. [9] obtained the main grades of Astragalus polysaccharides through the purification process of Astragalus crude polysaccharidesSur des colonnes de cellulose.

 

1.4 technologie de filtration par membrane à vibration ultra-fréquente

La technologie de filtration de membrane à vibration ultra-fréquente est une nouvelle et très efficace technologie dynamique de séparation de membrane basée sur la vibration mécanique à haute fréquence, qui produit un cisaillement élevé sur la surface de la membrane. Il a un large éventail d’application, une forte adaptabilité, une séparation continue et une concentration; En même temps, il présente les avantages de moins de procédures, un cycle plus court, un rendement élevé, un faible coût, un indice de sécurité élevé, il n’est pas facile de bloquer la membrane, la préservation et la régénération de la membrane est simple, et la durée de vie de la membrane est longue; La qualité du produit est stable et peut être entièrement garantie. Zhang Qinglei et al. [10] ont utilisé une conception expérimentale orthogonale pour optimiser les principaux facteurs d’influence tels que les différentes tailles de pores des membranes, la concentration initiale du liquide, la température et l’amplitude du liquide, en utilisant le flux efficace, le taux de rétention et la teneur en polysaccharide des membranes comme indices, et ont finalement déterminé les membranes PS optimales avec le MWCO relatif deAstragalus aqueous extract as c, the concentration of liquid as 1:15, and the temperature of liquid as 45 ℃.

 

1.5 précipitations alcooliques classées

Graded alcohol precipitation is to take advantage of the different solubility of polysaccharides of different molecular weights in organic solvents, such as ethanol, to increase the concentration of organic solvents, so that polysaccharides of different molecular weights can be precipitated sequentially. This method is suitable for the separation of polysaccharides with large differences in solubility, but not for the separation of polysaccharides with similar polarity and different structures. Yan Qiao-juan et al [ 11 ] studied the molecular weight distribution of Astragalus polysaccharides by graded alcohol deposition, stepwise alcohol deposition and ultrafiltration, and the results showed that the yield of Astragalus polysaccharides prepared by graded alcohol deposition increased with the increase of alcohol concentration, and the content of polysaccharides obtained was higher when the alcohol concentration was 30% and 70%, and the polysaccharides that were precipitated by stepwise alcohol deposition accounted for the largest percentage of the polysaccharides at 10% alcohol concentration, and most of the polysaccharides could be precipitated at 80% alcohol concentration, and the resulting polysaccharides could be precipitated by stepwise alcohol deposition.

 

Most of the polysaccharides could be precipitated when the alcohol concentration reached 80%, and the content of polysaccharides obtained was not much different except that it was lower when the alcohol concentration was 90%; most of the polysaccharides of Astragali after ultrafiltration were distributed in the centrifugal precipitation and the part of MWCO of 150kDa, which accounted for 57.6%; and the content of the polysaccharides in the parts of the parts of the parts of Astragalus membranaceus were not much different except that the parts of 3kDa or below and the parts of 6kDa to 50kDa were lower.

 

2 utilisations Des polysaccharides d’astragale

2.1 antioxydant

Excessive oxidation of the human body accelerates aging, disease, and death, and a large number of studies have shown that antioxidant activity is an important process in the prevention of aging. In order to study the antioxidant activity of polysaccharides, in vitro antioxidant tests are often designed, and R.Z. Zhong et al. [12] investigated the effects of Astragalus and Astragalus polysaccharides on growth performance, blood metabolites, rumen fermentation, immune response and antioxidant capacity of weaned lambs. The results showed that the addition of APS and AMT mainly improved the antioxidant capacity and affected the rumen fermentation pattern of lambs, while the addition of AMT affected the immunity of lambs, but neither of the two additives improved the apparent digestibility of nutrients in weaned lambs.

 

Rui- Zhan Chen et al. [13] ont étudié l’optimisation de laenzyme extraction process of Astragalus polysaccharide (APS), its separation, properties and antioxidant activity of APS. The antioxidant activity of APS was determined in vitro by FRAP and DPPH scavenging assay. The results showed that the three polysaccharides (APs-1-1, APs-2-1 and APs-3-1) obtained had good antioxidant properties and showed a concentration dependence, especially APs-3-1, which had the highest content of glyoxylate and the lowest molecular weight, had the strongest antioxidant and free radical scavenging activity. It is suggested that APs-3-1 can be used as an effective natural antioxidant in the medical and food industries.

 

Hu Bijun [14] a étudié laextraction process of Astragalus polysaccharide and its antioxidant activity by microwave-assisted method. The results showed that the DPPH-scavenging rate of Astragali polysaccharides increased with the increase of mass concentration in the range of 0.5-2.0 g-L-1, and the OH-scavenging rate of Astragali polysaccharides increased with the increase of mass concentration in the range of 0.5-2.5 g-L-1, with a better linear relationship, and the half-scavenging rate of Astragali polysaccharides was at a mass concentration of 1.494 g-L-1 . The mass concentration at half clearance was 1.494g-L-1, indicating that Astragalus polysaccharide has a certain ability to remove DPPH- and OH-.

 

2.2 anti-tumeur

As the most important natural active ingredient of the traditional Chinese medicine Astragalus membranaceus, the antitumor effect of astragalus polysaccharides has attracted much attention from domestic and foreign researchers in recent years.Bin Yang et al. [15] studied the antitumor and immunomodulatory activities of astragalus polysaccharides against hepatocellular carcinoma in the mouse model of H22 hepatocellular carcinoma. The results showed that astragalus polysaccharide (100 and 400 mg-kg-1) could effectively inhibit the solid tumor growth of H22 hepatocellular carcinoma transplanted in BALB/c mice; moreover, astragalus polysaccharide treatment could promote the secretion of IL-2, IL-12, and TNF- α in serum and reduce the level of IL-10. In conclusion, the results showed that astragalus polysaccharide has anti-tumor activity in vivo by improving the immune response of host organisms.

 

JeanYu et al. [ 16 ] extracted and purified alcohol-soluble polysaccharides (APS) from Astragali (Astra- galus membranaceus) and investigated their antitumor activities. The results showed that APS could inhibit the growth of H22 hepatocytes in vivo by improving the levels of serum cytokines (TNF- α, IL-2, and IFN- γ) and the activities of immune cells (macrophages, lymphocytes, and NK cells), further inducing apoptosis of the tumor cells, and decreasing their additional damage. In summary, APS may become a new potential antitumor drug in the future. Juan Yu et al. [17] investigated the effects of different temperatures on the structural characterization and antitumor activity of Astragalus polysaccharides. Three Astragalus polysaccharides (APS4, APS90, and APS4-90) were extracted at different temperatures, and the MTT results showed that APS4 had the highest inhibitory effect on MGC-803, A549, and HepG2 cells; at the same time, the structural characterization of APS4 showed that APS4 had a higher content of (1→2,6)-α-D-Glcp, which indicated that a higher degree of branching would lead to a stronger antitumor activity in vitro. suggesting that a higher degree of branching would lead to stronger antitumor activity in vitro. Heat treatment (APS4-90) or hot water extraction (APS90) resulted in a reduction of the branched chains in APS, leading to a lower in vitro antitumor effect.

 

2.3 effet hypoglycémique

Diabetes mellitus is currently recognized as one of the diseases with high morbidity, difficult to cure, and prone to other complications that seriously endanger human health, in order to study the mechanism of Astragalus polysaccharide to improve diabetes mellitus, Yameng Liu Liuet al. [18] extracted a novel polysaccharide called AERP from the waste residue of the industrial Astragalus extract, which consisted of two components, AERP1 and AERP2. In vivo, AERP has hypoglycemic effects in db/db diabetic mice by reducing hyperglycemia, tissue damage, and inhibiting cognitive deficits.AERP can alter the intestinal microbiota and regulate the composition of SCFAs.ZHU Zhen- Yuan et al.[19] evaluated the α-glucosidase inhibitory effects of polysaccharides isolated from Astragalus membranaceus, Oyster mushrooms, and Xuehuanglian fruits by the glucose oxidase assay. The inhibition of α-glucosidase by polysaccharides isolated from Astragalus, oyster mushroom and snow lotus fruit was evaluated by glucose oxidase method. The results showed that the inhibition of α-glucosidase by polysaccharides from Astragalus, Oyster mushroom and Snow lotus fruit was in decreasing order; the inhibition rate of α-glucosidase by Astragalus and Oyster polysaccharides was above 40% at a polysaccharide concentration of 0.4 mg-mL-1 . The IC50 of Astragalus polysaccharide and oyster polysaccharide were 0.28 and 0.424 mg-mL-1, respectively, suggesting that polysaccharides may be used as dietary supplements for health foods and as therapeutic agents for diabetes mellitus.

 

2.4 Cardioprotection

Tianlong Liu et al. [20] found that astragalus polysaccharides were able to ameliorate CVB3-induced myocardial injury, dilated cardiomyopathy, chronic myocardial fibrosis, and l’inflammation in mice at the pathological level. This may be partly attributed to the regulation of the TLR-4/NF-κ Bp65 signaling pathway; moreover, the inhibitory effect of astragalus polysaccharides on CVB3-induced activation of TLR-4/NF-κBp65 signaling was not related to TNF- α. Yue Le soleilet al. observed the effects of astragalus polysaccharides (APS) on the cardiac function and the expression of Keap1/Nrf2-ARE signaling pathway in adjuvant arthritis (AA) rats. The effect of APS on cardiac function and Keap1/Nrf2- ARE signaling pathway expression in AA rats was observed. The results showed that APS could regulate the expression of Keap1/Nrf2-ARE signaling pathway and improve cardiac function in AA rats. The mechanism may involve increasing myocardial antioxidant capacity, reducing oxidative stress and inhibiting inflammation.

 

2.5 effets immunomodulateurs

Dandan Liu et al. [22] investigated the protective effect of Astragalus polysaccharide (APS) against OTA-induced immune stress in vitro and in vivo and its mechanism. The results showed that APS could attenuate OTA-induced immune stress in vitro and in vivo by activating the AMPK/SIRT-1 signaling pathway.

 

Lijing Zhou et al. [23] investigated the effects and mechanisms of astragalus polysaccharide (APS) on macrophages in RAW 264.7 and EAC tumor-bearing mice. The results showed that in C57BL/10J (TLR4+/+ wild-type) and C57BL/6J yD88 +/+ wild-type) tumor-bearing mice, 25 days of oral administration of APS resulted in increased apoptosis rate, immune organ index, and blood levels of TNF- α, IL- 1β, and IL-6, and reduced tumor weight. APS can regulate the immune function of host organisms by activating the MyD88-dependent signaling pathway mediated by TLR4.

 

3 Conclusion

Ces dernières années, un grand nombre de polysaccharides végétaux ont été isolés des plantes. En tant que molécules d’information importantes dans les organismes vivants, les polysaccharides ont diverses activités biologiques et jouent un très bon rôle dans l’anti-âge, l’anti-tumeur et l’anti-virus, etc., avec peu d’effets secondaires toxiques. Parmi eux, le polysaccharide d’astragale, comme ingrédient actif naturel le plus important de l’astragale de la médecine traditionnelle chinoise, a montré des activités remarquables en antioxydant, antitumoral, hypoglycémique, antibactérien, etc. Il a un grand potentiel dans le domaine des soins de santé. Les polysaccharides Astragali ont un grand potentiel dans le domaine des soins de santé et ont une large perspective de développement et d’utilisation. Cependant, le mécanisme par lequel les polysaccharides d’astragale exercent leurs effets pharmacologiques doit être étudié plus en détail.

Various methods have been used for the separation and purification of polysaccharides, such as large-pore adsorbent resin separation, gel column chromatography, DEAE cellulose column chromatography, etc. The purity of Astragali polysaccharides and their antimicrobial activity are also important. The purity of astragalus polysaccharides and the composition and structure of monosaccharides in astragalus polysaccharides have an impact on the pharmacological effects, solubility and bioavailability of astragalus polysaccharide preparations. It is of great theoretical and practical significance to prepare high purity Astragali polysaccharides through new separation techniques to improve their bioavailability, solubility and pharmacological activity.

 

Références:

[1] Zhao Fengchun. Séparation et purification des polysaccharides d’astragale par adsorption de résine [J]. Food and Fermentation Industry, 2009, 35(1): 179- 181.

[2] HU Zhengming, MA Haiyong, CHENG Jianming. Etude du procédé de purification du polysaccharide d’astragale par résine d’adsorption macroporeuse [J]. Modern Medicine and Health, 2010, 26(2): 164- 165.

[3] WANG Shuping, LI Xiaojing, ZHANG Guizhen. Optimisation du procédé d’extraction polysaccharidique et de purification d’astragalus membranaceus[J]. Journal of Molecular Science, 2008, (1): 60-64.

[4] Qu Jing. Séparation et purification de polysaccharides d’astragale de faible poids moléculaire et analyse structurelle [D]. Northeast Normal University, 2010.

[5] LI Hong-Quan, ZHAO Wanguo, LU Xiaohu. Composition chimique et analyse structurelle du polysaccharide d’astragale, un immunopotentiateur animal [J]. Journal of Chinese Veterinary Medicine, 2008, 27(5): 5- 9.

[6] Zhang Xiaowei. Extraction des principes actifs de l’astragalus membranaceus et recherche sur différentes méthodes de séchage [D]. Université agricole de Shandong, 2007.

[7] DING Hailong, HE Kaize, ZHANG Lei, et al. Extraction des polysaccharides de l’astragalus Membranaceus et leur analyse par méthode de séchage [D]. Extraction et séparation des polysaccharides de l’astragalus membranaceus par masse moléculaire relative [J]. Journal of Applied and Environmental Biology,2010,16(5): 719 — 723.

[8] TANG Yuwei,ZHANG Yu,WANG Yuliang,et al. Isolement et caractérisation structurelle des polysaccharides de l’astragalus membranaceus[J]. Shizhen Guomian Guomao, 2014, 25(5): 1097- 1100.

[9] GUO Hui-Qing. Recherche sur l’isolement et la purification du polysaccharide astragale et sa fonction hypoglycémique [J]. Heilongjiang Animal Husbandry and Veterinary Medicine, 2015, (8): 118- 119.

[10] Zhang Qinglei. Recherche sur l’application de la technologie de filtration par membrane de vibration à ultrafrequence dans le processus de séparation et de purification du polysaccharide d’astragale [D]. Université pharmaceutique de Guangdong, 2009.

[11] YAN Qiao-juan, HAN Lu-jia, JIANG Zheng-qiang, et al. Répartition du poids moléculaire des polysaccharides Astragalus. Distribution du poids moléculaire des polysaccharides d’astragale [J]. Food Science, 2004, 25(8): 27- 30.

[12] Zhong R Z, Yu M, Liu H W, et al. Effets de la supplémentation des racines Astragalus polysaccharide et Astragalus membranaceus sur les performances de croissance, la fermentation du rumen, les réponses immunitaires et le statut antioxydant des agneaux [J]. Animal Feed Science and Technology, 2012, 174(1- 2):0- 67.

[13] Chen R Z, Tan L,Jin CG, et al. Extraction, isolement, caractérisation et activité antioxydante des polysaccharides de l’astragalus membranaceus[J]. J]. Cultures et produits industriels, 2015, 77(19): 434- 443.

[14] Hu Bijun. Optimisation du procédé d’extraction du polysaccharide d’astragalus membranaceus et de son activité antioxydante [J]. Industrie pharmaceutique chinoise, 2018, 27(24): 11- 14.

[15] [traduction] Yang B, Xiao B, Sun T. activité antitumorale et immunomodulatrice des polysaccharides d’astragalus membranaceus dans la tumeur H22 - ours - Ing mice[J]. International journal of biological macromolecules, 2013, 62(11):287- 290.

[16] [traduction]  Juan  Y, Hai- Yu J, J,J, Mon - Jun L. : Alcool - soluble Polysaccharide de, Astragalus membranaceus: préparation, caractéristiques et activité antitumoral [J]. Revue internationale de Macro- Molécules, 2018, 118: 2057- 2064.

[17] [traduction] Juan Yu, Haiyu Ji, Zhizhi Yang, et al. Relation entre les propriétés structurelles et l’activité antitumorale d’astragalus polysaccha- rides extraits à différentes températures [J]. Jour International des macromolécules biologiques, 2019, 124: 469- 477.

[18] [traduction] Liu Y,Liu W, Li J, et Al. Un polysaccharide extrait du résidu d’astragalus membranaceus améliore le dysfonctionnement cognitif par al- Microbiote intestinal chez les souris diabétiques [J]. Polymères glucides, 2019, 205: 500- 512.

[19] [traduction] Évaluation Comparative des polysaccharides isolés de l’astragale, du champignon huître et du yacon En tant qu’inhibiteurs de α - glucosidase[J]. Chinese Journal of Natural Medicines, 2014, 12(4):290- 293.

[20] [en] Tianlong Liu, Mingjie Zhang, HaiyanNiu, et al. Polysaccharide d’astragale from  Astragalus  Melittin Améliore les performances l’inflammation En supprimant l’activation de TLR- 4/NF- κB p65 Signal de la voie et protège les souris contre la myocardite virale induite par CVB3 [J]. En - Revue internationale des macromolécules biologiques, 2019, 126: 179-  186.

[21] [en]  Sun  Y,  Liu  J,  Wan Wan L,  et   al.  Amélioration de Les effets Des Polysaccharides d’astragale sur la fonction cardiaque via Keap1/Nrf 2- sont des voies de Signal chez des Rats arthritiques adjuvants [J]. Chinese Herbal Medicines, 2016, 8(2):143- 153.

[22] [en] Dandan L, Jiarui S, Jiashan L, et Al. L’activation du sirt-1 dépendant de l’ampk par le polysaccharide d’astragale protège contre le stress immunitaire induit par la ochra- toxine A- in vitro et in vivo[J]. International Journal of Biological Macromolecules, 2018,120:683- 692.

[23] [en] Zhou L, Liu Z, Wang Z, et Al. Astragalus polysaccharides exerce des effets immunomodulateurs par l’intermédiaire de la voie de signalisation dépendante de MyD88 médiée par TLR4 in vitro et in vivo[J]. Rapports scientifiques, 2017, (7): 44822.

Suivez nous!
Retour à la liste
Précédent précédent

Quelles sont les utilisations des Polysaccharides d’astragale?

Suivant:

Quelles sont les utilisations et les avantages de l’extrait de Rhodiola Rosea?

Besoin de plus d’informations, s’il vous plaît contactez-nous.