De quoi est fabriqué l’acide hyaluronique?

Apr Apr28,2025
Catégorie de produits:Matériaux cosmétiques

Acide hyaluroniqueis also known as hyaluronic acid. It is a viscous polysaccharide composed of (1-3)-2-acetamido-2-deoxy-β-D-glucose units linked by β-1,4 and β-1,3 glycosidic bonds, alternately connected with (1-4)-O-β-D-glucuronic acid units. Hyaluronic acid is a widely distributed polysaccharide molecule in nature that forms a viscoelastic substance when combined with water. In the human body, it is primarily found in skin and connective tissues, serving as an extracellular matrix. In addition to providing cells with water and volume, it possesses properties such as tissue stability, strong binding capacity, high viscoelasticity, weak species and tissue specificity, and lack of immunogenicity. Hyaluronic acid has widespread applications in drug delivery, anti-adhesion in orthopaedic surgery, cardiology, arthritis, cancer therapy, ophthalmology, and food supplements.

 

1 préparation d’acide hyaluronique

1.1 méthode d’extraction des tissus animaux

En 1934, Meyer et al., professeurs d’ophtalmologie à l’université de Columbia aux États-Unis, ont pour la première fois isolé cette substance de l’humour vitreux des yeux de vache [1]. Dans les années 1970, Balazs et al. ont extrait de l’acide hyaluronique des peignes de poulet et des cordons ombilicaux humains [1].

 

Le conseil des ministresmain process for extracting hyaluronic acid powder from animal tissues includes dehydration, grinding, soaking, extraction, purification, precipitation, and separation. The specific process is as follows: first, homogenise the tissue, then extract it with water and dilute salt solution. The extract is precipitated with chlorinated hexadecylpyridine or hexadecyl trimethylammonium bromide, The resulting precipitate is dissolved, the residue is removed, and the solution is precipitated with 2–3 times the volume of ethanol to obtain crude hyaluronic acid. Purification can be achieved by treating the crude product with ethanol or quaternary ammonium salts, or by further removing impurities and proteins using enzymatic hydrolysis, ultrafiltration, or ion exchange techniques, ultimately yielding the final product.

 

The tissue extraction method has the advantages of a simple process, high molecular weight, high viscosity, and strong moisturising properties. However, due to limitations in raw material availability and the coexistence of hyaluronic acid with other polysaccharides such as chondroitin sulfate in biological tissues, this method has low yield, poor separation, complex process, and high cost, making it unsuitable for large-scale production. It is more suitable for small-scale production with dispersed raw material sources. With the continuous increase in demand and application scope of hyaluronic acid, the animal tissue extraction method will inevitably be gradually replaced by other methods.

 

1.2 méthode de fermentation microbienne

Depuis les années 1970, les chercheurs ont commencé à utiliser la fermentation microbienne pour produire de la poudre d’acide hyaluronique. Shiseido, au Japon, a signalé pour la première fois l’utilisation de Streptococcus equi pour produire de l’acide hyaluronique en 1985. Les bactéries productrices d’acide hyaluronique couramment signalées sont principalement les groupes A et C des espèces de Streptococcus répertoriées dans la liste des espèces#39;s Manual. The A group mainly includes Streptococcus pyogenes, which are pathogenic to humans and unsuitable as production strains; the C group of Streptococcus species are non-pathogenic to humans and more suitable for industrial production. In recent years, foreign countries have already achieved industrial-scale production of hyaluronic acid using C group Streptococcus species [2].

 

Operational process: Inoculate the slant culture into conical flasks containing culture medium, incubate at 37°C for 12–16 hours, then transfer to seed tanks. The nitrogen source in the culture medium is peptone, beef extract, yeast extract, etc., the carbon source is glucose, and the inoculation ratio is 1:10. The fermentation broth formulation is essentially the same as the seed broth, except that the glucose content is higher, typically 3%–6%. Maintain an aeration rate of 0.3–1.0 vvm (volume of air per minute relative to the fermentation volume), stir at 120 rpm, and ferment at 37°C for 40–46 hours. During fermentation, adjust the pH to 6.5–7.0. In the later stages of fermentation, when the glucose concentration drops below 0.5% and the pH decreases slowly or stops decreasing, fermentation is complete. After fermentation, adjust the pH to 4.0–4.5 with trichloroacetic acid, filter to remove the bacterial mass, adjust the filtrate pH to 6.0–6.5, add 95% ethanol, and precipitate hyaluronic acid. Dissolve the precipitate in a 0.1 mol/L sodium chloride solution, stirring, add an excess of 1% CPC to form a complex precipitate with the hyaluronic acid in the filtrate, let stand, siphon off the mother liquor, wash the precipitate twice, dissolve in 0.4 mol/L sodium chloride solution with stirring overnight, filter, precipitate with ethanol, dehydrate with ethanol, and vacuum dry to obtain hyaluronic acid.

 

Currently, the fermentation method for producing hyaluronic acid as an alternative to tissue extraction has become a trend. The fermentation method for producing hyaluronic acid has a simple process, does not rely on animal tissues, and its yield is not limited by raw material sources. Additionally, hyaluronic acid exists in a free state in the fermentation broth, making it easy to separate, purify, and industrialise. Therefore, the fermentation method has become the primary method for industrial production of hyaluronic acid [3].

 

1.3 méthode de synthèse artificielle

Related studies have shown that hyaluronic acid in living organisms is synthesised by hyaluronic acid synthase catalysing the reaction of UDP-G1cA and UDP-G1cNAc [4]. Therefore, researchers both domestically and internationally have attempted to synthesise hyaluronic acid in vitro using enzymatic methods and have made some progress. Neuman [5] reported a method for the artificial synthesis of hyaluronic acid, First, a polysaccharide polymer, one of the biological macromolecules, is used to synthesise hyaluronic acid oxazepane derivatives. Then, a decomposing enzyme (hyaluronidase from sheep or cow testes) is added to form a complex of the derivative and the enzyme. Finally, the enzyme is removed from the reaction solution, and hyaluronic acid is synthesised. Additionally, precipitation, separation, and purification are required.

 

Artificially synthesised hyaluronic acid is similar in quality to natural hyaluronic acid, but the precursor materials required for in vitro synthesis are expensive, so the artificial synthesis method is generally used for producing high-molecular-weight, high-purity hyaluronic acid [6].

 

2 recherche sur les dérivés de l’acide hyaluronique

Clinical applications have demonstrated that natural hyaluronic acid possesses excellent biocompatibility; however, it is easily degraded and diffused in tissues, resulting in short retention times in the body and suboptimal application outcomes. Recent studies have shown that hyaluronic acid derivatives obtained through modification and cross-linking can address these limitations [7].

 

The hydroxyl, carboxyl, N-acetylamino, and reducing ends of the hyaluronic acid molecule are the four sites susceptible to chemical modification, with primary modification methods including esterification, cross-linking, and grafting. The two most commonly used sites for covalent modification of hyaluronic acid are the carboxyl and hydroxyl groups. Currently reported derivatives with clinical application value are primarily new excipients derived from the modification of the hydroxyl and carboxyl groups of hyaluronic acid. 

Cosmetic Grade Hyaluronic Acid Powder Low Molecular Weight

These derivatives can be selected based on their intended use, with appropriate cross-linking agents chosen to enhance relevant physical properties such as biocompatibility, degradability, in vivo retention time, drug loading capacity, and stability. Hyaluronic acid gels modified with diethyl sulfoxide (DVS) exhibit unique biocompatibility and other properties, solutions using aldehydes as cross-linking agents (hyaluronic acid fluids) exhibit high viscoelasticity, while cross-linking agents with multiple functional groups, such as epoxy compounds, can improve water solubility. Additionally, the reaction between cross-linking agents and the carboxyl groups of hyaluronic acid can produce derivatives, such as esters and amines, which enhance biocompatibility, among other properties [8]. Furthermore, cross-linking reactions can be used to design and prepare functional, intelligent drug carriers, thereby enhancing drug efficacy, improving drug targeting, and reducing adverse effects. Therefore, the use of cross-linking reactions to modify hyaluronic acid not only expands its application scope but also enhances its practical value [9].

 

3 Applications de poudre d’acide hyaluronique

3.1 Applications dans les cosmétiques

In the early 1980s, the excellent moisturising properties of hyaluronic acid garnered significant attention from the international cosmetics industry. Extensive literature and decades of domestic and international applications have demonstrated that hyaluronic acid can be used in cosmetics such as creams, lotions, masks, beauty serums, toners, lipsticks, foundations, and essences, as well as in products like shampoos, conditioners, mousses, and facial cleansers. For example, Restylane by Swiss company Restylane, Hydrobella moisturising lotion by French company Maybelline, and domestic brands such as Yongfang, Ziranmei, and Lvdanlan [10]. In cosmetics, hyaluronic acid plays a role in moisturising, preventing and repairing skin damage, nourishing and lubricating the skin, and having antibacterial and anti-inflammatory effects. Currently, for the rejuvenation of facial wrinkles, botulinum toxin and skin fillers are the two main non-surgical treatment methods, targeting dynamic and static wrinkles, respectively. Since hyaluronic acid was first used as a skin filler, its advantages and efficacy have gradually gained recognition from both medical professionals and patients, leading to a steady increase in usage. It has broken the dominance of collagen-based products and has ranked first in usage in the United States for five consecutive years [11].

 

3.2 Applications dans les aliments

In China, over 98% of hyaluronic acid is primarily used in the pharmaceutical, clinical diagnosis, and cosmetics industries. Hyaluronic acid is still in its infancy in the food sector, with limited reports available. In fact, hyaluronic acid is not only used topically for moisturisation; oral hyaluronic acid can also enhance the body' S hydratation. Par la digestion et l’absorption, l’acide hyaluronique peut améliorer la vitalité et la jeunesse; Il peut hydrater et lisser la peau, la rendant douce et élastique; Et il peut retarder le vieillissement et prévenir des conditions telles que l’arthrite, l’artériosclérose, l’arythmie et l’atrophie cérébrale. Un nombre croissant de suppléments de beauté et de santé à base d’acide hyaluronique sont disponibles à la fois au pays et à l’étranger, tels que Hyaron ECM·E produit par l’institut japonais de recherche sur l’acide hyaluronique, capsules rapides de beauté produites par Natural-Max, capsules d’acide hyaluronique et comprimés produits par Source Naturals, et de beauté orale collagène acide hyaluronique et Rui'er capsules de Source d’eau.

 

3.3 Applications cliniques

Formulations d’acide hyaluronique purSont disponibles sous trois formes pour l’usage clinique: pulvérisation liquide, application de gel, et couverture de film. L’acide hyaluronique est largement utilisé en ophtalmologie et en orthopédie et s’est étendu à de nombreux autres domaines, y compris la chirurgie générale, l’otolaryngologie et la chirurgie de la main. L’acide hyaluronique est utilisé pour traiter les maladies des os et des articulations, soulager efficacement l’arthrite, les douleurs articulaires et réguler la fonction articulaire. Il a également montré de bons résultats dans la chirurgie de fixation de fracture, la raideur articulaire, et la thérapie d’injection de discectomie lombaire. L’adhésion tissulaire postopératoire est un défi majeur en chirurgie. Des essais cliniques approfondies ont démontré que l’acide hyaluronique empêche efficacement l’adhésion postopératoire, réduisant considérablement les complications et les séquelles causées par l’adhésion. Puisque l’acide hyaluronique est un composant naturel des corps humains et animaux, il est sûr et fiable comme matière première pharmaceutique sans effets secondaires. Par conséquent, l’acide hyaluronique est un nouveau biomatériau très populaire dans le domaine médical aujourd’hui.

 

Pang Suqiu et al. [12] used hyaluronic acid solution to treat dry eye syndrome, and clinical results indicated that hyaluronic acid has a good therapeutic effect on dry eye disease. Goto et al. [13] administered sodium hyaluronate into the joint cavities of 25 patients with chronic progressive joint diseases, and followed up with clinical symptoms and parameters. The results showed significant improvements in all indicators, with patients' Amélioration des conditions. Luo Hongtu et al. [14] ont divisé au hasard 396 patients subissant diverses chirurgies de la thyroïde en deux groupes. Le groupe expérimental (214 cas) a reçu des injections d’acide hyaluronique sur la surface de la plaie thyroïdienne, en profondeur du groupe musculaire antérieur du cou, la couche profonde du muscle platysme. Le groupe témoin de 182 patients n’a pas reçu d’acide hyaluronique.

 

The results showed that 26 cases of postoperative adhesion occurred in the experimental group, while 41 cases occurred in the control group, with a significant difference between the two groups. Additionally, hyaluronic acid, as an important component of the extracellular matrix, regulates interactions between cells and between cells and the matrix, promoting wound healing and inhibiting abnormal scar formation caused by excessive collagen deposition. Hyaluronic acid also promotes granulation tissue formation, reduces scab area, shortens scab detachment time, and has a promoting effect on burn healing. Jiang Lixia et al. [8] reported that spraying burn patients with hyaluronic acid artificial skin powder resulted in good therapeutic effects and high safety.

 

3.4 Applications en pharmacie

3.4.1 améliorer la stabilité des médicaments

Freeze-dried single-chamber liposomes tend to reform into large multi-chamber liposomes, which is detrimental to therapies requiring small particle liposomes. Wang Yuhui [15] reported that by bonding sodium hyaluronic acid to the surface of biodegradable liposomes via hydrogen bonds, the transformation of freeze-dried single-chamber liposomes into large multi-chamber liposomes could be effectively inhibited, thereby stabilising freeze-dried single-chamber liposomes. Peer et al. [16] prepared hyaluronic acid-heparin conjugate gels and bound recombinant human basic fibroblast growth factor-2 (FGF-2) to the heparin end of the hyaluronic acid-heparin conjugate. In vitro analyses indicated that hyaluronic acid-heparin conjugate gels enhance the stability and activity of FGF-2.

 

3.4.2 Applications dans les formulations à libération contrôlée

Hyaluronic acid and its derivatives can serve as sustained-release carriers for various drugs, such as anticancer drugs, anti-inflammatory drugs, and anaesthetics. Hyaluronic acid has diverse application forms as a drug carrier. Chou et al. [17] prepared hyaluronic acid-coated polycyanoacrylate butyl ester nanoparticles (hyaluronic acid-PBCA), which were obtained through a free radical polymerisation reaction of hyaluronic acid monomers and polycyanoacrylate monomers. Using paclitaxel as a model anticancer drug, the encapsulation efficiency of hyaluronic acid-PBCA nanoparticles reached 90%. The tumor cell proliferation inhibitory effect of paclitaxel-loaded hyaluronic acid-PBCA nanoparticles was significantly higher than that of paclitaxel-loaded PBCA nanoparticles and paclitaxel injection. Homma et al. [18] conjugated hyaluronic acid with the anti-inflammatory drug methotrexate using short peptides and linkers to form hyaluronic acid-methotrexate conjugates for the treatment of osteoarthritis, achieving controlled-release of the drug at the site of inflammation and effectively reducing the toxic side effects of methotrexate. Hyaluronic acid hn et al. [19] prepared injectable hyaluronic acid microgel for the controlled release of erythropoietin (EPO). In vivo release experiments showed that EPO was slowly released from the microgel, with plasma EPO concentrations exceeding 0.1 mg/L, which is the minimum concentration required for EPO to exert its effects. This concentration was maintained for 7 days without significant toxic side effects.

 

Hyaluronic acid and its derivatives as carriers offer unique biocompatibility, rheological properties, and chemical and physical diversity, making them an effective sustained-release system for pharmacologically active molecules. The practical application of hyaluronic acid as a biological carrier combined with various drugs will be a key focus of future research and development.

 

3.4.3 Application dans les médicaments anticancéreux

Research has shown that certain solid tumours and metastatic lymphocytes express high levels of hyaluronic acid receptors—CD44—with which hyaluronic acid has a strong affinity. As a targeted carrier for antitumour drugs, hyaluronic acid can bind smaller drug molecules to its network structure or graft drug molecules onto hyaluronic acid-based drug carriers, targeted binding with receptors on the surface of tumour cells, enabling more drug molecules to enter tumour tissue, increasing the absorption and retention time of anticancer drugs in tumours and lymph nodes, thereby enhancing drug efficacy and reducing toxic side effects. Luo et al. [20] esterified hyaluronic acid with paclitaxel to form a bio-targeted prodrug. Fluorescent labelling revealed that the drug could specifically bind to cells, and this binding could be blocked by excess hyaluronic acid and anti-CD44 antibodies but not by chondroitin sulfate. Paclitaxel was released through the hydrolysis of the ester bond. Brown et al. [21] administered 5-fluorouracil and methotrexine containing hyaluronic acid and without hyaluronic acid to nude mice with thymoma via tail vein injection, The results showed that the drug concentrations in the tumour tissue increased by 403% and 106%, respectively.

 

Hyaluronic acid and its derivatives can be formulated into drug compositions or used as carriers to target and retain different drugs in various parts of the human body. This not only enables drugs to act on more precise target sites, increasing the concentration of therapeutic drugs at the site of action and significantly enhancing therapeutic efficacy, but also avoids drug side effects, providing a more effective approach for disease treatment [22].

 

3.5 biomatériaux

As a biomaterial, hyaluronic acid possesses advantages such as good biocompatibility and rapid biodegradability. Chen Jianying et al. [23] conducted biocompatibility tests on cross-linked hyaluronic acid gel membranes (CIIA-gel) in terms of in vitro haemolysis, cytotoxicity, acute toxicity, eye irritation, intradermal reaction, sensitisation, and genotoxicity. The results demonstrated that CIIA-gel material exhibits excellent biocompatibility and stable physical and chemical properties. Xiao Rongdong et al. [24] conducted in vivo degradation tests on hyaluronic acid membranes, which conformed to the general process of biodegradation of biomaterials in vivo, with no significant inflammatory reactions and satisfactory tissue compatibility. Fan Hongbin, Hu Yunyu et al. [25] conducted experimental studies on gelatin-chondroitin sulfate-sodium hyaluronate as a tissue engineering cartilage scaffold, demonstrated that gelatin-chondroitin sulfate-sodium hyaluronate porous scaffolds prepared by vacuum drying at 80°C exhibit good pore size, porosity, and compressive load-bearing capacity, and show good compatibility with rabbit bone marrow mesenchymal stem cells (MSCs), making them a novel biomimetic scaffold material for cartilage tissue engineering.

 

4 analyse et résumé

In recent years, hyaluronic acid has developed rapidly. In 1985, the total global sales of hyaluronic acid in the international market reached 100 million USD, rising to over 200 million USD in 1990. By 2004, the global market size for hyaluronic acid applications was approximately 3 billion USD, and by 2012, it had grown to approximately 4.5 billion USD. Statistical data show that in 2012, the total sales of hyaluronic acid as a single skin filler in the international market reached 1.4 billion US dollars, with the markets for drug cosmetics and skincare products and medical products each accounting for half [26-28].

 

En tant que nouveau type d’excipient, l’acide hyaluronique présente des avantages tels qu’une bonne biocompatibilité, une dégradation rapide, d’excellentes propriétés hydratantes et la stabilité des tissus. Cependant, plusieurs problèmes entravent encore le développement de l’acide hyaluronique en Chine. D’abord, China's production capacity for hyaluronic acid is far from meeting market demand, especially for high-molecular-weight pharmaceutical-grade hyaluronic acid, which must be imported from abroad. Therefore, increasing the molecular weight and production volume of hyaluronic acid is an urgent issue to address.

 

Second, the variety of hyaluronic acid derivatives is relatively limited, with similar physical and chemical properties, limiting the range of options available and necessitating further research and development. Third, there are no clear grading standards for hyaluronic acid, which is currently classified into food-grade, cosmetic-grade, and pharmaceutical-grade categories based on intended use. The criteria for these classifications are vague, and there is significant overlap between grades, causing significant inconvenience in practical applications. Fourth, when used as a drug carrier, there is no standard method for calculating drug loading capacity, which affects drug content and preparation processes. Fifth, the process of combining hyaluronic acid with other materials to produce biomaterials is still immature, with low production rates and currently at an early stage, requiring further research.

 

En outre, le rendement etquality of hyaluronic acid produced by microbial methods primarily depend on the following factors: the performance of the production strain, the culture medium, the optimisation of fermentation processes, and the control of fermentation and subsequent separation and purification [29-30]. In China, due to limitations in fermentation equipment, processes, and strain selection, the production level and efficiency of hyaluronic acid are relatively low compared to foreign countries, with imports being the primary source, especially for high-purity, high-molecular-weight hyaluronic acid. Due to these limitations, the price of hyaluronic acid in China remains high. However, with the increasing maturity of fermentation technology in China, growing health awareness, and improved understanding of hyaluronic acid, the market for food-grade hyaluronic acid has seen rapid expansion in recent years. In summary, whether for pharmaceutical, cosmetic, or food applications, hyaluronic acid holds vast development potential and demand.

 

Finally, it is hoped that through the joint efforts of domestic and international scholars, more innovative ideas and applications can be applied to hyaluronic acid research and development, ensuring that the comprehensive development of hyaluronic acid is just around the corner.

 

Références:

[1] Bai Huiyu, Xu Jing, Li Huijun et al. Progrès de la recherche sur la préparation et l’application de l’acide hyaluronique [J]. Guangdong Chemical Industry, 2010, 37(11): 332.

[2] Song Lei, Wang Tengfei. A Review of the Current Status of Hyaluronic Acid Research [J]. Journal of Shandong Light Industry College, 2012, 26(2): 78.

[3] Chen Yihan, Ye Rui, Qian Yue, et al. Progrès de la recherche sur la Production biochimique d’acide hyaluronique [J]. Journal of Shanghai Institute of Applied Technology, 2012, 12(2): 1124.

[4] Valarie L, Bruce A. Purification et dépendance aux lipides des synthases hyaluronanes recombinantes de Streptococcus pyogenes et Streptococcus equisimilis [J]. J Biol Chem, 1999, 274(7):4239.

[5] Neuman MG, Orua L, Coto G, et al. Signaux d’acide hyaluronique pour la réparation dans l’apoptose induite par l’éthanol dans les cellules de la peau in vitro [J]. Clin Biochem, 2010, 43 (10/11): 822.

[6] Ozgenel G, Et6z A. effets des injections répétitives d’acide hyaluronique sur les adhésions périténdineuses après la réparation du tendon flexeur: un essai clinique préliminaire randomisé, contrôlé contre placebo [J]. Ulus Travma Acil Cerrahi Derg, 2012, 18(1): 11.

[7] balázs E A, Laurent T C. table ronde: nouvelles applications pour hyaluronan [A]. Laurent T C. la chimie, la biologie et les applications médicales de l’hyaluronan et de ses dérivés [M]. Londres: Portland Press, 1998: 325.

[8] Jiang Lixia, Wang Wenbin. Applications de l’acide hyaluronique et de ses dérivés en médecine [J]. Chinese Journal of Reconstructive Surgery, 2010, 14(15): 56.

[9] Xu Xin, Shi Danping, Ye Wenxi, et al. Progrès dans la préparation de dérivés de hyaluronan récroisés [J]. Guangdong Chemical Industry, 2012, 39(5): 99.

[10] Pan Hongmei. A review of the current status of hyaluronan research [J]. Sichuan Food and Fermentation, 2003, 1(8): 67.

[11] Wu Sufan. Connaissances de base et applications cliniques de l’acide hyaluronique [J]. Modern Practical Medicine, 2010, 22(4): 171.

[12] Pang Suqiu, Zhou Jinsheng, Chen Qiushuang et al. Applications cliniques de l’hyaluronate de sodium [J]. Straits Pharmacy, 2011, 15(4): 252.

[13] Goto M, Hanyu T, Yoshio T, et al. L’injection intra-articulaire d’hyaluronate (SI-6601D) améliore les douleurs articulaires et les niveaux de prostaglandine E2 du liquide synovial dans la polyarthrite rhumatoïde: un essai clinique multicentrique [J]. Clin Exp Rheumatol, 2001, 19(4): 377.

[14] Luo Hongtu, Yang Shao Yu. Étude sur l’effet préventif de l’hyaluronate de sodium sur les adhésions postopératoires après une chirurgie de la thyroïde [J]. Journal de chirurgie clinique, 2009, 12(5): 313.

[15] Wang Yuhui. Application d’acide hyaluronique et de ses sels sodiques dans des formulations pharmaceutiques [J]. Food and Medicine, 2011, 7(8): 78.

[16] Yang Hao, Xiong Wenshuo, Ying Guoqing, et al. Préparation et application de dérivés d’acide hyaluronique réticulés [J]. Chemical Industry Progress, 2006, 5(9): 234.

[17] Chou W Y, Ko J Y, Wang FS, et al. Effet du traitement à l’hyaluronate de sodium sur les lésions des manchettes des rotateurs sans déchirures complètes: étude randomisée, en double aveugle, contrôlée contre placebo [J]. Journal of Shoulder and Elbow Surgery, 2010, 19(4): 557.

[18] Homm A, Sato H, Tamura T et al. Synthèse et optimisation des conjugués acide hyaluronique et méthotrexate pour maximiser les bénéfices dans le traitement de l’arthrose [J]. Biobiologique & Medicinal Chemistry, 2010, 18(3): 1062.

[19]Hahn S, Kim JS, Shimoboujit H. microhydrogels d’acide hyaluronique Injectable pour la formulation à libération contrôlée de l’érythropoïétine [J]. J Biomed Mater Res A, 2007, 80(4): 916.

[20]Luo Y, Ziebell M R, Prestwich G D. un bioconjugué antitumoral acide hyaluronique taxol ciblé sur les cellules cancéreuses [J]. Biomacromolecules, 2000, 1(2): 208.

[21]Brown T J, Hatherell E M, Falzon J L, et al. Hyaluronan ciblage des médicaments anti-métabolites contre le cancer chez les xénogreffes de tumeurs du sein humaines [Z]. (2005) soumis au Cancer chimiautre Pharmacol.

[22] Liu Z, Wang B. nouvelles avancées dans la recherche clinique de l’acide hyaluronique [J]. Food and Medicine, 2006, 8(12): 98.

[23] Chen Jianying, Song Haibo. Préparation et étude de biocompatibilité de membranes de gel d’hyaluronan réticulées [J]. Biomedical Engineering Research, 2009, 28(2): 104.

[24] Xiao Rongdong, Weng Guoxing. Comparaison des propriétés mécaniques et de la compatibilité tissulaire des membranes de collagène /hyaluronan et des matériaux d’échafaudage en éponge de gélatine [J]. Chinese Journal of Tissue Engineering Research, 2012, 16(25): 1123.

[25] Fan Hongbin, Yun Yu. Étude expérimentale sur l’hyaluronate de sulfate de sodium de gélatine-chondroïtine comme échafaudage du cartilage du génie tissulaire [J]. Chinese Journal of Reconstructive Surgery, 2005, 19(6): 473.

[26] Chou CL, Li HW, Lee SH et al. Effet de l’injection intra-articulaire d’acide hyaluronique chez les patients atteints d’arthrose du genou atteints de polyarthrite rhumatoïde [J]. Journal de l’association médicale chinoise, 2008, 71(8): 411.

[27]Lee H, Lee K, Park TG. Micelles conjuguées hyaluronique acido-paclitaxel: synthèse, caractérisation et activité antitumorale [J]. Bioconjugate Chemistry, 2008, 19(6): 1319.

[28]Benjamin Y S O, Ranganath S H, Lee L Y, et al. Administration de Paclitaxel à partir de mousses PLGA pour libération contrôlée dans la chimiothérapie post-chirurgicale contre le glioblastome multiforme [J]. Biomaterial, 2009, 30(12): 3189.

[29]Park K, Lee M Y, Kim K S, et al. Traitement de tumeur spécifique à la cible par VEGF siRNA complexé avec un conjugué d’acide hyaluronique réductible de polyéthylèneimine [J]. Biomaterials, 2010, 31(19): 5258.

[30]Sudhir H, Yilong F, Davis Y, et al. L’invention concerne l’utilisation d’imimplants PLGA submicro nano-échelle pour délivrer du paclitaxel avec une pharmacocinétique et une efficacité thérapeutique accrues dans le gliome intracrânien chez la souris [J]. Biomaterial, 2010, 31(3): 5199.

Suivez nous!
Retour à la liste
Précédent précédent

aucun

Suivant:

Quelles sont les utilisations de la poudre d’acide hyaluronique dans l’arthrose?

Besoin de plus d’informations, s’il vous plaît contactez-nous.