Ce que vous devez savoir sur l’acide hyaluronique?
Acide hyaluronique, also known as hyaluronan, is a viscous polysaccharide substance formed by the repeated alternation of (1–3) –2–acetamido–2–deoxy–β–D–glucose linked via β–1,4 and β–1,3 glycosidic bonds with (1–4) –O–β–D–glucuronic acid [1]. The molecular weight ranges from tens of thousands to millions. The molar ratio of N-acetylglucosamine to glucuronic acid in the molecule is 1:1, and its structure is shown in Figure 1 [2].
In 1937, Kendell et al. [3] extracted HA from the fermentation broth of a strain of bacteria. Since then, there has been extensive and in-depth research on the distribution, physical and chemical properties, chemical structure, production process, and applications in medicine, cosmetics, and health food.
1 propriétés et distribution de l’acide hyaluronique
Hyaluronic acid has many properties in common with other viscous polysaccharides: it is white, an amorphous solid at room temperature, odourless and tasteless, highly hygroscopic, slightly soluble in water and insoluble in organic solvents. However, hyaluronic acid has unique properties compared to other sugars. This is because the glycosidic bonds between glucuronic acid and N-acetylglucosamine on the straight chain axis of hyaluronic acid, hydrogen bonds and interactions with the aqueous solution cause hyaluronic acid to form a rigid helical column with a radius of 200 nm in space. On the one hand, the inner surface of the column is strongly hydrophilic due to the large number of hydroxyl groups; on the other hand, the continuous and directional arrangement of the hydroxyl groups also creates highly hydrophobic areas on the hyaluronic acid molecule chain. It is precisely the hydrophilic and hydrophobic properties of the HA molecule that allow a continuous three-dimensional honeycomb network structure to form even at HA concentrations below 10-3. Water molecules are fixed in the spiral column within this honeycomb network by polar bonds and hydrogen bonds with hyaluronic acid molecules, and are not easily lost. Therefore, hyaluronic acid can absorb about 1000 times its own weight in water like a molecular sponge, and is internationally recognized as the best moisturizer [4].
In nature, HA is widely distributed in various tissues of higher animals. HA has now been isolated from umbilical cords, skin, human serum, chicken combs, synovial fluid, brain cartilage, eye vitreous humor, chicken embryos, human urine, and arterial and venous walls. In mammals, the highest amounts of hyaluronic acid are found in the vitreous body, synovial fluid and umbilical cord [5], while the amount of HA in the comb of a rooster is similar to that in synovial fluid [6]. HA is bound to proteins and coexists with other mucopolysaccharides. It exists in a dissolved form in the vitreous body and synovial fluid, and in a gel form in the comb of a rooster and umbilical cord. Hyaluronic acid is not only found in the tissues of higher animals, but also in some bacteria. Bacteria with high HA content have been found, mainly Pseudomonas aeruginosa, Clostridium perfringens and Streptococcus hemolyticus types A, B and C [7].
2. Applications de l’acide hyaluronique
2.1 acide hyaluronique dans les cosmétiques
Hyaluronic acid has a good moisturizing effect and is a natural moisturizing ingredient additive in high-end cosmetics. Because it is a natural factor widely present in human skin tissue and has good compatibility, it can be added to almost any beauty cosmetic, from the original creams, lotions, and lotions to the current bath salts, powders, lipsticks, etc. [8]. Its superior performance has attracted widespread attention from the international cosmetics industry. When cosmetics containing HA are applied to the skin surface, hyaluronic acid can form a viscoelastic hydrated film on the skin surface, which can smooth and moisturize the stratum corneum of the skin, and block the invasion of foreign bacteria, dust and ultraviolet rays, protecting the skin from damage. At the same time, hyaluronic acid can penetrate the epidermis of the skin, slightly expand the capillaries, increase blood circulation, improve intermediary metabolism, and promote the absorption of skin nutrients and the discharge of waste. In addition, hyaluronic acid has a strong wrinkle-reducing effect, increases skin elasticity, and delays skin aging. This is the dual effect of hyaluronic acid on skin moisturization and nutrition.
2.2 l’acide hyaluronique en médecine
Hyaluronic acid and its salts are the main components of connective tissue such as the human body's intercellular matrix, the vitreous body of the eye, articular cartilage, and synovial fluid of the joints [9]. Due to its unique physical and chemical properties and physiological functions, hyaluronic acid has been widely used in medicine. In the treatment of joint diseases, supplementing the body with exogenous hyaluronic acid can restore the lubricating function of synovial fluid, creating time for the diseased joint to repair itself, promote joint repair and functional improvement; in ophthalmic surgery, it can effectively support the anterior chamber after being injected into the anterior chamber, and can form a protective film on the surface of other tissues in the eye and the surface of surgical equipment to prevent mechanical damage to the equipment; in surgical operations, hyaluronic acid can be used to prevent postoperative adhesion and promote skin wound healing; as a medium, HA is also widely used in eye drops [10]. In addition, hyaluronic acid can be combined with other drugs to achieve targeted and timed release by using the targeting effect of HA receptors. Therefore, with the gradual development of medical technology, the application of hyaluronic acid in the medical field will become more and more extensive.
2.3 Application de l’acide hyaluronique dans l’industrie alimentaire
The amount of hyaluronic acid in the human body is about 18g, and it plays a vital role in the physiological activities of the human body. If the Teneur en acide hyaluronique in the joint cavity, blood vessels, heart, eyes, brain and other tissues and organs decreases, it may lead to diseases such as arthritis, atherosclerosis, pulse disorders and brain atrophy. Oral intake of hyaluronic acid can supplement the body' S manque d’ha et prévenir le vieillissement des tissus et des cellules causé par un manque d’acide hyaluronique dans le corps. En particulier, elle a un effet significatif sur le maintien de la santé des personnes âgées. L’acide hyaluronique peut retarder le vieillissement par la digestion et l’absorption, laissant la peau hydratée, lisse, douce et élastique [11]; En même temps, l’acide hyaluronique oral peut également rendre les gens pleins d’énergie et de vitalité jeune. À l’heure actuelle, la beauté orale d’acide hyaluronique et les aliments de santé sont payés de plus en plus d’attention et acceptés par de plus en plus de gens.
3 préparation de l’acide hyaluronique
Il y a deux principauxmethods for preparing hyaluronic acid: l’une consiste à l’extraire des tissus animaux, et l’autre à l’obtenir par fermentation microbienne [12].
3.1 méthode d’extraction des tissus
HA is widely found in the interstitial matrix of various animal tissues, such as skin, joint synovial fluid, cartilage, eye vitreous body, rooster comb, chicken embryo, etc. Among them, the human umbilical cord, rooster comb, joint synovial fluid and eye vitreous body have the highest hyaluronic acid content. The general method for extracting HA from tissues is as follows: animal tissue is first homogenized, then dissolved in water and a dilute salt solution. The solution is precipitated with hexadecylpyridinium chloride, and the resulting precipitate is dissolved in sodium chloride solution. The crude product is then precipitated with a threefold ethanol solution, and purified repeatedly using hexadecylpyridinium chloride and ethanol, or by gel and ion exchange chromatography. The hyaluronic acid obtained from humans and animals has a higher viscosity and better moisturizing properties, and its relative molecular weight is generally greater than 600,000. At present, most of the hyaluronic acid used in high-end cosmetics and medical-grade ophthalmology is still obtained by this method. However, the traditional extraction method is costly, the source is limited, and the purification is complicated, making it difficult to meet the ever-increasing demand [13].
3.2 Fermentation méthode de production
Since the 1970s, some people have been using microbial fermentation to produce hyaluronic acid. In 1985, Shiseido of Japan first reported the use of Streptococcus zooepidemicus to produce hyaluronic acid. The commonly reported hyaluronic acid-producing bacteria are mainly Group A and Group C streptococci in the Berger' S manuel. Le groupe A comprend principalement les streptocoques pyogènes, etc., qui sont des agents pathogènes pour l’homme et qui ne devraient pas être utilisés comme souches de production; Les streptocoques du groupe C sont des agents pathogènes non humains et conviennent mieux à la production industrielle. Actuellement, la production industrielle d’acide hyaluronique à l’aide de Streptococcus pyogenes a déjà atteint un stade industriel au cours des dernières années. En général, le rendement et la qualité de l’acide hyaluronique produit par des méthodes microbiens dépendent principalement des aspects suivants: le rendement de la souche de production, l’optimisation du milieu de culture et du processus de fermentation, le contrôle du processus de fermentation, la séparation et la purification en aval de la fermentation.
3.2.1 sélection et sélection de souches à haut rendement
The breeding of high-yielding hyaluronic acid strains is a very important task that must be carried out over the long term. At present, ChinaL’élevage de souches produisant de l’acide hyaluronique repose encore principalement sur la mutagenèse artificielle traditionnelle. La méthode générale de mutagénèse est la suivante: obtenir une souche originale de la nature ou d’un animal, l’identifier comme Streptococcus zooepidemicus et produire de l’acide hyaluronique, puis utiliser cette souche comme souche de départ pour le NTG, la lumière ultraviolette ou une combinaison des deux. La souche génétiquement stable et produisant des niveaux élevés d’acide hyaluronique est choisie comme souche de départ pour la poursuite de la mutagénèse. Ce processus est répété plusieurs fois pour augmenter le niveau de production d’acide hyaluronique. Cependant, avec l’étude approfondie continue du mécanisme de production d’acide hyaluronique de Streptococcus zooepidemicus, le clonage d’enzymes clés pour la biosynthèse de l’ha et la construction de bactéries génétiquement modifiées pour augmenter la production d’ha et contrôler son poids moléculaire sont devenus le centre de la recherche et du développement actuels.
3.2.2 appariement du milieu de culture
The requirements of Streptococcus zooepidemicus for the production of hyaluronic acid are extremely demanding. Currently, the main carbon source for industrial production of hyaluronic acid is glucose, and the nitrogen source is yeast powder, peptone, beef extract or compound organic nitrogen source. However, when the medium is not properly matched, resulting in an imbalance in the ratio of nitrogen and carbon sources or a lack of growth factors, the metabolic pathway of Streptococcus zooepidemicus will change, and more of the substrate glucose will be converted into by-products such as lactic acid or acetic acid, affecting the fermentation production level of hyaluronic acid. Therefore, the choice of culture medium is extremely important.
3.2.3 optimisation de la technologie de fermentation et contrôle du processus de fermentation
Streptococcus zooepidemicus, which produces hyaluronic acid, is a facultative anaerobe, and hyaluronic acid is the main component of the capsule of Streptococcus zooepidemicus. When there is too much dissolved oxygen in the fermentation broth, it will cause damage to the bacteria. Insufficient dissolved oxygen will result in a lack of stimulation of Streptococcus zooepidemicus, which will lead to the bacteria not producing capsules and reduce the production of hyaluronic acid. The main process factors affecting the dissolved oxygen level in the fermentation broth are the rotational speed and the amount of aeration. In addition, different temperatures, rotational speeds and pH values have a significant effect on the molecular weight of hyaluronic acid. Studying the fermentation kinetics of hyaluronic acid can help us understand the laws of the fermentation production process, so that we can optimize and control the fermentation process to improve the production level and efficiency of hyaluronic acid.
3.2.4 séparation et purification de l’acide hyaluronique dans le bouillon de fermentation
The downstream separation and purification process is a key link in obtaining high molecular weight and high purity hyaluronic acid, and it is the bottleneck restricting the production of high-standard HA in many companies. The hyaluronic acid fermentation broth is very viscous and is a complex multi-phase system. The fluid properties are non-Newtonian. The main suspended solids in the fermentation broth are: fermentation product hyaluronic acid, bacterial cells, various impurity proteins and residual components in the culture medium and other metabolites. It is difficult to quickly and effectively separate HA from other components in the fermentation broth. At the same time, autolysis of the bacteria in the fermentation broth can produce hyaluronidase to degrade HA, which greatly reduces the molecular weight of HA [14]. Therefore, finding a suitable separation and purification process is of great significance for the preparation of high-standard hyaluronic acid.
4 perspectives
Fermentation is a cost-effective method for producing hyaluronic acid, and the extraction process is simple. It has been scaled up for production and has broad market prospects. The international market price for cosmetic-grade HA is 1000 to 2000 $/kg, while the price for pharmaceutical-grade HA is 6000 to 20000 $/kg. En 1985, les ventes totales d’ha sur le marché international s’élevaient à 100 millions de dollars US, passant à plus de 200 millions de dollars US en 1990 et à 600 millions de dollars US en 1995. Les statistiques montrent que le marché mondial des produits liés à l’acide hyaluronique représentait environ 3 milliards de dollars US en 2004, les additifs pharmaceutiques et cosmétiques pour les soins de la peau et les produits médicaux représentant chacun la moitié du marché. L’europe, les États-Unis et le Japon sont les plus grands marchés pour la production et l’utilisation de produits à base d’acide hyaluronique, et on s’attend à ce qu’ils continuent à croître à un rythme de 15% par an à l’avenir. Actuellement, la demande intérieure annuelle d’acide hyaluronique est d’environ 5 tonnes.
Since the 1980s, the production of hyaluronic acid by fermentation has been achieved abroad, and the number of manufacturers has increased from more than ten to hundreds, and the scale is also getting larger and larger. In contrast, in China, the production level and production efficiency of hyaluronic acid are relatively low, and there are few manufacturers that produce HA by microbial fermentation, which seriously restricts the development and application of hyaluronic acid in China. At present, the main bottlenecks in the development of hyaluronic acid production in China and the problems that need to be solved are mainly the following:
(1) (1) Faible rendement des souches bactériennes: selon la littérature chinoise, le rendement en laboratoire peut atteindre environ 6 à 8 g/L, mais après application dans l’industrie, le rendement peut être beaucoup plus faible en raison de facteurs tels que les matières premières et les conditions de fermentation. Il existe encore un écart important par rapport au niveau international de fermentation en usine de 8 à 10 g/L ou plus. Par conséquent, l’utilisation de méthodes traditionnelles de sélection par mutagénèse ou de génie génétique pour obtenir des souches bactériennes à haut rendement est une orientation de recherche importante pour l’application.
(2) Small and uneven molecules: There are many factors that affect the molecular size of hyaluronic acid. According to literature reports, during the fermentation process, dissolved oxygen, pH, and temperature can all affect the molecular size.
(3) processus de fermentation Immature: la cinétique est la base de l’application de la technologie moderne de fermentation. Son étude peut nous aider à comprendre les lois du processus de fermentation, de sorte que le processus de production peut être optimisé et contrôlé pour obtenir des taux de conversion de substrat élevés et des intensités de production élevées.
(4) The fermentation mechanism is not clear: According to existing literature reports, only a very small number of substrates can be converted into hyaluronic acid. Although the research on the synthesis pathway of hyaluronic acid has been carried out at the molecular level, there is no feasible and effective theory that can greatly increase the yield of hyaluronic acid.
Références:
[1] Ling Peixue. Acide hyaluronique [M]. Beijing: China Light Industry Press, 2000.
[2] Laurent T C. biochimie de l’hyaluronique. Acta Otolaryngol (Stockh) [J], suppl, 1987(442):7-24.
[3] Kendell F E, Heidellberger M, Dawson M H. un polysaccharide sérologiquement inactif élaboré par des souches mucoïdes de streptococcus hémolytique du groupe A [J]. J Biol Chem, 1997 (118): 61-69.
[4] Wu Dongru. Biochimie des glucides [M]. Beijing: Higher Education Press, 2001.
[5] Pogrel M A, Lowe M A, Stern R. Hyaluronic (acide hyaluronique) dans la salive humaine [J]. Aich Oral Biol, 1996, 41: 667-671.
[6] Wang Dong. L’acide hyaluronique synthétique au Japon [J]. Journal of Chemical Industry and Engineering, 2002(1): 16
[7] Zhang Huzhong, Wen Yuanlin. Chimie des ingrédients actifs animaux [M], Tianjin: Tianjin Science and Technology Publishing House, 1995.
[8] Xu Hong, Lu Zhihua. Application d’hyaluronate de sodium dans les cosmétiques [J]. Chinese Journal of Biochemical Drugs, 1998: (5): 222-223.
[9] Fan Ming. Effet de l’acide hyaluronique sur la teneur en cytokines dans le liquide synovial de l’arthrose du genou [D]. Qingdao: université de Qingdao, 2005.
[10] Bi Ying. Une étude du film d’hyaluronate de sodium pour prévenir l’adhésion après la chirurgie [D]. Qingdao: université de Qingdao, 2002.
[11] Yang Suzhen, Chen Guirui. Caractéristiques de l’acide hyaluronique et son application dans les aliments [J]. Food Industry Science and Technology, 2008, 29(6): 317-320.
[12] Ishikawa, Osamu. Nippon Gankaishi [J]. Ganka, 1987 (38): 927.
[13] Lu, Nianci, Tan Tianwei. Préparation et application d’acide hyaluronique [J]. Journal of Functional Polymer Science, 2001, 14(3): 370-376.
[14] Kui Miaomiao, Cui Bo, Sun Hongbo, et al. Progrès de la recherche sur les méthodes d’extraction et de détermination de l’huile d’oignon vert [J]. Journal of Shandong University of Light Industry, 2010, 24(3): 1-3.